89 research outputs found

    Neuromorphic adaptive edge-preserving denoising filter

    Full text link
    In this paper, we present on-sensor neuromorphic vision hardware implementation of denoising spatial filter. The mean or median spatial filters with fixed window shape are known for its denoising ability, however, have the drawback of blurring the object edges. The effect of blurring increases with an increase in window size. To preserve the edge information, we propose an adaptive spatial filter that uses neuron's ability to detect similar pixels and calculates the mean. The analog input differences of neighborhood pixels are converted to the chain of pulses with voltage controlled oscillator and applied as neuron input. When the input pulses charge the neuron to equal or greater level than its threshold, the neuron will fire, and pixels are identified as similar. The sequence of the neuron's responses for pixels is stored in the serial-in-parallel-out shift register. The outputs of shift registers are used as input to the selector switches of an averaging circuit making this an adaptive mean operation resulting in an edge preserving mean filter. System level simulation of the hardware is conducted using 150 images from Caltech database with added Gaussian noise to test the robustness of edge-preserving and denoising ability of the proposed filter. Threshold values of the hardware neuron were adjusted so that the proposed edge-preserving spatial filter achieves optimal performance in terms of PSNR and MSE, and these results outperforms that of the conventional mean and median filters.Comment: IEEE International Conference on Rebooting Computing 201

    The Department of Electrical and Computer Engineering Newsletter

    Get PDF
    Summer 2017 News and notes for University of Dayton\u27s Department of Electrical and Computer Engineering.https://ecommons.udayton.edu/ece_newsletter/1010/thumbnail.jp

    Binary Weighted Memristive Analog Deep Neural Network for Near-Sensor Edge Processing

    Full text link
    The memristive crossbar aims to implement analog weighted neural network, however, the realistic implementation of such crossbar arrays is not possible due to limited switching states of memristive devices. In this work, we propose the design of an analog deep neural network with binary weight update through backpropagation algorithm using binary state memristive devices. We show that such networks can be successfully used for image processing task and has the advantage of lower power consumption and small on-chip area in comparison with digital counterparts. The proposed network was benchmarked for MNIST handwritten digits recognition achieving an accuracy of approximately 90%

    Real-time Analog Pixel-to-pixel Dynamic Frame Differencing with Memristive Sensing Circuits

    Full text link
    In this paper, we propose an analog pixel differencing circuit for differentiating pixels between frames directly from CMOS pixels. The analog information processing at sensor is a topic of growing appeal to develop edge AI devices. The proposed circuit is integrated into a pixel-parallel and pixel-column architectures. The proposed system is design using TSMC 180nm180nm CMOS technology. The power dissipation of the proposed circuit is 96.64mW96.64mW, and on-chip ares is 531.66μm2531.66 \mu m^2. The architectures are tested for moving object detection application.Comment: IEEE SENSORS 201

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore