182 research outputs found

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Neurorobotics—A Thriving Community and a Promising Pathway Toward Intelligent Cognitive Robots

    Get PDF
    Neurorobots are robots whose control has been modeled after some aspect of the brain. Since the brain is so closely coupled to the body and situated in the environment, Neurorobots can be a powerful tool for studying neural function in a holistic fashion. It may also be a means to develop autonomous systems that have some level of biological intelligence. The present article provides my perspective on this field, points out some of the landmark events, and discusses its future potential

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    Med Image Comput Comput Assist Interv

    Get PDF
    We present a novel image registration method based on B-spline free-form deformation that simultaneously optimizes particle correspondence and image similarity metrics. Different from previous B-spline based registration methods optimized w.r.t. the control points, the deformation in our method is estimated from a set of dense unstructured pair of points, which we refer as corresponding particles. As intensity values are matched on the corresponding location, the registration performance is iteratively improved. Moreover, the use of corresponding particles naturally extends our method to a group-wise registration by computing a mean of particles. Motivated by a surface-based group-wise particle correspondence method, we developed a novel system that takes such particles to the image domain, while keeping the spirit of the method similar. The core algorithm both minimizes an entropy based group-wise correspondence metric as well as maximizes the space sampling of the particles. We demonstrate the results of our method in an application of rodent brain structure segmentation and show that our method provides better accuracy in two structures compared to other registration methods.R42 NS059095/NS/NINDS NIH HHS/United StatesU01 AA019969/AA/NIAAA NIH HHS/United StatesA020024/PHS HHS/United StatesAA019969/AA/NIAAA NIH HHS/United StatesU24 AA020022/AA/NIAAA NIH HHS/United StatesR01 AA006059/AA/NIAAA NIH HHS/United StatesP01 DA022446/DA/NIDA NIH HHS/United StatesU54 EB005149/EB/NIBIB NIH HHS/United StatesP30 HD03110/HD/NICHD NIH HHS/United StatesR41 NS059095/NS/NINDS NIH HHS/United StatesU54 sEB005149/SE/SEPDPO CDC HHS/United StatesP30 HD003110/HD/NICHD NIH HHS/United StatesU24 AA020024/AA/NIAAA NIH HHS/United StatesU01 AA020023/AA/NIAAA NIH HHS/United StatesU01 AA020022/AA/NIAAA NIH HHS/United StatesA020023/PHS HHS/United StatesAA06059/AA/NIAAA NIH HHS/United States2014-04-03T00:00:00Z24505762PMC397456

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes
    • …
    corecore