35 research outputs found

    Distributed Neurodynamics-Based Backstepping Optimal Control for Robust Constrained Consensus of Underactuated Underwater Vehicles Fleet

    Full text link
    Robust constrained formation tracking control of underactuated underwater vehicles (UUVs) fleet in three-dimensional space is a challenging but practical problem. To address this problem, this paper develops a novel consensus based optimal coordination protocol and a robust controller, which adopts a hierarchical architecture. On the top layer, the spherical coordinate transform is introduced to tackle the nonholonomic constraint, and then a distributed optimal motion coordination strategy is developed. As a result, the optimal formation tracking of UUVs fleet can be achieved, and the constraints are fulfilled. To realize the generated optimal commands better and, meanwhile, deal with the underactuation, at the lower-level control loop a neurodynamics based robust backstepping controller is designed, and in particular, the issue of "explosion of terms" appearing in conventional backstepping based controllers is avoided and control activities are improved. The stability of the overall UUVs formation system is established to ensure that all the states of the UUVs are uniformly ultimately bounded in the presence of unknown disturbances. Finally, extensive simulation comparisons are made to illustrate the superiority and effectiveness of the derived optimal formation tracking protocol.Comment: This paper is accepted by IEEE Transactions on Cybernetic

    Distributed Robust Learning-Based Backstepping Control Aided with Neurodynamics for Consensus Formation Tracking of Underwater Vessels

    Full text link
    This paper addresses distributed robust learning-based control for consensus formation tracking of multiple underwater vessels, in which the system parameters of the marine vessels are assumed to be entirely unknown and subject to the modeling mismatch, oceanic disturbances, and noises. Towards this end, graph theory is used to allow us to synthesize the distributed controller with a stability guarantee. Due to the fact that the parameter uncertainties only arise in the vessels' dynamic model, the backstepping control technique is then employed. Subsequently, to overcome the difficulties in handling time-varying and unknown systems, an online learning procedure is developed in the proposed distributed formation control protocol. Moreover, modeling errors, environmental disturbances, and measurement noises are considered and tackled by introducing a neurodynamics model in the controller design to obtain a robust solution. Then, the stability analysis of the overall closed-loop system under the proposed scheme is provided to ensure the robust adaptive performance at the theoretical level. Finally, extensive simulation experiments are conducted to further verify the efficacy of the presented distributed control protocol

    Bioinspired Coordinated Path Following for Vessels with Speed Saturation Based on Virtual Leader

    Get PDF
    This paper investigates the coordinated path following of multiple marine vessels with speed saturation. Based on virtual leader strategy, the authors show how the neural dynamic model and passivity-based techniques are brought together to yield a distributed control strategy. The desired path following is achieved by means of a virtual dynamic leader, whose controller is designed based on the biological neural shunting model. Utilizing the characteristic of bounded and smooth output of neural dynamic model, the tracking error jump is avoided and speed saturation problem is solved in straight path. Meanwhile, the coordinated path following of multiple vessels with a desired spatial formation is achieved through defining the formation reference point. The consensus of formation reference point is realized by using the synchronization controller based on passivity. Finally, simulation results validate the effectiveness of the proposed coordinated algorithm

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    A Hybrid Nonlinear Model Predictive Control and Recurrent Neural Networks for Fault-Tolerant Control of an Autonomous Underwater Vehicle

    Get PDF
    The operation of Autonomous Unmanned Vehicles (AUVs) that is used for environment protection, risk evaluation and plan determination for emergency, are among the most important and challenging problems. An area that has received much attention for use of AUVs is in underwater applications where much work remains to be done to equip AUVs with systems to steer them accurately and reliably in harsh marine environments. Design of control strategies for AUVs is very challenging as compared to other systems due to their operational environment (ocean). Particularly when hydrodynamic parameters uncertainties are to be integrated into both the controller design as well as AUVs nonlinear dynamics. On the other hand, AUVs like all other mechanical systems are prone to faults. Dealing effectively with faulty situations for mechanical systems is an important consideration since faults can result in abnormal operation or even a failure. Hence, fault tolerant and fault-accommodating methods in the controller design are among active research topics for maintaining the reliability of complex AUV control systems. The objective of this thesis is to develop a nonlinear Model Predictive Control (MPC) that requires solving an online Quadratic Programming (QP) problem by using a Recurrent Neural Network (RNN). Also, an Extended Kalman Filter (EKF) is integrated with the developed scheme to provide the MPC algorithm with the system states estimates as well as a nonlinear prediction. This hybrid control approach utilizes both the mathematical model of the system as well as the adaptive nature of the intelligent technique through neural networks. The reason behind the selection of MPC is to benefit from its main capability in optimization within the current time slots while taking future time slots into consideration. The proposed control method is integrated with EKF which is an appropriate method for state estimation and data reconciliation of nonlinear systems. In order to address the high performance runtime cost of solving the MPC problem (formulated as a quadratic programming problem), an RNN is developed that has a low model complexity as well as good performance in real-time implementation. The proposed method is first developed to control an AUV following a desired trajectory. Since the problem of trajectory tracking and path following of AUVs exhibit nonlinear behavior, the effectiveness of the developed MPC-RNN algorithm is studied in comparison with two other control system methods, namely the linear MPC using Kalman Filter (KF) and the conventional nonlinear MPC using the EKF. In order to guarantee the fault-tolerant features of our proposed control method when faced with severe actuator faults, the developed MPC-RNN scheme is integrated with a dual Extended Kalman Filter that is used for a combined estimation of AUV states and parameters. The actuator faults are defined as the system parameters that are to be estimated online by the dual-EKF. Therefore, the developed Active Fault-Tolerant Control (AFTC) strategy is then applied to an AUV faced with loss of effectiveness (LOE) actuator fault scenarios while following a trajectory. Analysis and discussions regarding the comparison of the proposed AFTC method with Fault-Tolerant Nonlinear Model Predictive Control (FTNMPC) algorithm are presented in this work. The proposed approach to AFTC exploits the advantages of the MPC-RNN algorithm properties as well as accounting explicitly for severe control actuator faults in the nonlinear AUV model with uncertainties that are formulated by the MPC

    Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Get PDF
    In this paper, potential field method has been used to navigate a three omnidirectional wheels' mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON) problem. For further consideration, model predictive control (MPC) has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace

    Cooperative Swarm Optimisation of Unmanned Surface Vehicles

    Get PDF
    Edited version embargoed 10 07.01.2020 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 11/04/2019 by AS, Doctoral CollegeWith growing advances in technology and everyday dependence on oceans for resources, the role of unmanned surface vehicles (USVs) has increased many fold. Extensive operations of USVs having naval, civil and scientific applications are currently being undertaken in various complex marine environments and demands are being placed on them to increase their autonomy and adaptability. A key requirement for the autonomous operation of USVs is to possess a multi-vehicle framework where they can operate as a fleet of vehicles in a practical marine environment with multiple advantages such as surveying of wider areas in less time. From the literature, it is evident that a huge number of studies has been conducted in the area of single USV path planning, guidance and control whilst very few studies have been conducted to understand the implications of the multi vehicle approaches to USVs. This present PhD thesis integrates the modules of efficient optimal path planning, robust path following guidance and cooperative swarm aggregation approach towards development of a new hybrid framework for cooperative navigation of swarm of USVs to enable optimal and autonomous operation in a maritime environment. Initially, an effective and novel optimal path planning approach based on the A* algorithm has been designed taking into account the constraint of a safety distance from the obstacles to avoid the collisions in scenarios of moving obstacles and sea surface currents. This approach is then integrated with a novel virtual target path following guidance module developed for USVs where the reference trajectory from the path planner is fed into the guidance system. The novelty of the current work relies on combining the above mentioned integrated path following guidance system with decentralised swarm aggregation behaviour by means of simple potential based attraction and repulsion functions to maintain the centroid of the swarm of USVs and thereby guiding the swarm of USVs onto a reference path. Finally, an optimal and hybrid framework for cooperative navigation and guidance of fleet of USVs, implementable in practical maritime environments and effective for practical applications at sea is presented.Commonwealth Scholarship Commissio
    corecore