17 research outputs found

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    A Hybrid Nonlinear Model Predictive Control and Recurrent Neural Networks for Fault-Tolerant Control of an Autonomous Underwater Vehicle

    Get PDF
    The operation of Autonomous Unmanned Vehicles (AUVs) that is used for environment protection, risk evaluation and plan determination for emergency, are among the most important and challenging problems. An area that has received much attention for use of AUVs is in underwater applications where much work remains to be done to equip AUVs with systems to steer them accurately and reliably in harsh marine environments. Design of control strategies for AUVs is very challenging as compared to other systems due to their operational environment (ocean). Particularly when hydrodynamic parameters uncertainties are to be integrated into both the controller design as well as AUVs nonlinear dynamics. On the other hand, AUVs like all other mechanical systems are prone to faults. Dealing effectively with faulty situations for mechanical systems is an important consideration since faults can result in abnormal operation or even a failure. Hence, fault tolerant and fault-accommodating methods in the controller design are among active research topics for maintaining the reliability of complex AUV control systems. The objective of this thesis is to develop a nonlinear Model Predictive Control (MPC) that requires solving an online Quadratic Programming (QP) problem by using a Recurrent Neural Network (RNN). Also, an Extended Kalman Filter (EKF) is integrated with the developed scheme to provide the MPC algorithm with the system states estimates as well as a nonlinear prediction. This hybrid control approach utilizes both the mathematical model of the system as well as the adaptive nature of the intelligent technique through neural networks. The reason behind the selection of MPC is to benefit from its main capability in optimization within the current time slots while taking future time slots into consideration. The proposed control method is integrated with EKF which is an appropriate method for state estimation and data reconciliation of nonlinear systems. In order to address the high performance runtime cost of solving the MPC problem (formulated as a quadratic programming problem), an RNN is developed that has a low model complexity as well as good performance in real-time implementation. The proposed method is first developed to control an AUV following a desired trajectory. Since the problem of trajectory tracking and path following of AUVs exhibit nonlinear behavior, the effectiveness of the developed MPC-RNN algorithm is studied in comparison with two other control system methods, namely the linear MPC using Kalman Filter (KF) and the conventional nonlinear MPC using the EKF. In order to guarantee the fault-tolerant features of our proposed control method when faced with severe actuator faults, the developed MPC-RNN scheme is integrated with a dual Extended Kalman Filter that is used for a combined estimation of AUV states and parameters. The actuator faults are defined as the system parameters that are to be estimated online by the dual-EKF. Therefore, the developed Active Fault-Tolerant Control (AFTC) strategy is then applied to an AUV faced with loss of effectiveness (LOE) actuator fault scenarios while following a trajectory. Analysis and discussions regarding the comparison of the proposed AFTC method with Fault-Tolerant Nonlinear Model Predictive Control (FTNMPC) algorithm are presented in this work. The proposed approach to AFTC exploits the advantages of the MPC-RNN algorithm properties as well as accounting explicitly for severe control actuator faults in the nonlinear AUV model with uncertainties that are formulated by the MPC

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Modeling and Control of the UGV Argo J5 with a Custom-Built Landing Platform

    Get PDF
    This thesis aims to develop a detailed dynamic model and implement several navigation controllers for path tracking and dynamic self-leveling of the Argo J5 Unmanned Ground Vehicle (UGV) with a custom-built landing platform. The overall model is derived by combining the Argo J5 driveline system with the wheelsterrain interaction (using terramechanics theory and mobile robot kinetics), while the landing platform model follows the Euler-Lagrange formulation. Different controllers are, then, derived, implemented to demonstrate: i.) self-leveling accuracy of the landing platform, ii.) trajectory tracking capabilities of the Argo J5 when moving in uneven terrains. The novelty of the Argo J5 model is the addition of a vertical load on each wheel through derivation of the shear stress depending on the point’s position in 3D space on each wheel. Static leveling of the landing platform within one degree of the horizon is evaluated by implementing Proportional Derivative (PD), Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR), feedback linearization, and Passivity Based Adaptive Controller (PBAC) techniques. A PD controller is used to evaluate the performance of the Argo J5 on different terrains. Further, for the Argo J5 - landing platform ensemble, PBAC and Neural Network Based Adaptive Controller (NNBAC) are derived and implemented to demonstrate dynamic self-leveling. The emphasis is on different controller implementation for complex real systems such as Argo J5 - Landing platform. Results, obtained via extensive simulation studies in a Matlab/Simulink environment that consider real system parameters and hardware limitations, contribute to understanding navigation performance in a variety of terrains with unknown properties and illustrate the Argo J5 velocity, wheel rolling resistance, wheel turning resistance and shear stress on different terrains

    Analysis and Control of Mobile Robots in Various Environmental Conditions

    Get PDF
    The world sees new inventions each day, made to make the lifestyle of humans more easy and luxurious. In such global scenario, the robots have proved themselves to be an invention of great importance. The robots are being used in almost each and every field of the human world. Continuous studies are being done on them to make them simpler and easier to work with. All fields are being unraveled to make them work better in the human world without human interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to find the controller that produces the most optimal path for the robot to reach its destination without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to find the best controller that could find the most optimal path for the robot to reach its goal position. Simulation and Experiments have been done alike to find out the optimal path for the robot

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic
    corecore