143 research outputs found

    Features Exploration from Datasets Vision in Air Quality Prediction Domain

    Get PDF
    Air pollution and its consequences are negatively impacting on the world population and the environment, which converts the monitoring and forecasting air quality techniques as essential tools to combat this problem. To predict air quality with maximum accuracy, along with the implemented models and the quantity of the data, it is crucial also to consider the dataset types. This study selected a set of research works in the field of air quality prediction and is concentrated on the exploration of the datasets utilised in them. The most significant findings of this research work are: (1) meteorological datasets were used in 94.6% of the papers leaving behind the rest of the datasets with a big difference, which is complemented with others, such as temporal data, spatial data, and so on; (2) the usage of various datasets combinations has been commenced since 2009; and (3) the utilisation of open data have been started since 2012, 32.3% of the studies used open data, and 63.4% of the studies did not provide the data

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    A hybrid CNN-LSTM model for predicting PM2.5 in Beijing based on spatiotemporal correlation

    Get PDF
    Long-term exposure to air environments full of suspended particles, especially PM2.5, would seriously damage people's health and life (i.e., respiratory diseases and lung cancers). Therefore, accurate PM2.5 prediction is important for the government authorities to take preventive measures. In this paper, the advantages of convolutional neural networks (CNN) and long short-term memory networks (LSTM) models are combined. Then a hybrid CNN-LSTM model is proposed to predict the daily PM2.5 concentration in Beijing based on spatiotemporal correlation. Specifically, a Pearson's correlation coefficient is adopted to measure the relationship between PM2.5 in Beijing and air pollutants in its surrounding cities. In the hybrid CNN-LSTM model, the CNN model is used to learn spatial features, while the LSTM model is used to extract the temporal information. In order to evaluate the proposed model, three evaluation indexes are introduced, including root mean square error, mean absolute percent error, and R-squared. As a result, the hybrid CNN-LSTM model achieves the best performance compared with the Multilayer perceptron model (MLP) and LSTM. Moreover, the prediction accuracy of the proposed model considering spatiotemporal correlation outperforms the same model without spatiotemporal correlation. Therefore, the hybrid CNN-LSTM model can be adopted for PM2.5 concentration prediction

    Air Quality Prediction using Voronai-Based Spatial Temporal Sequence Similarity with Conjugate Gradient Enabled Sparse Autoencoder Deep Learning

    Get PDF
    Air Quality Prediction (AQP) remains a difficult task because of multidimensional nonlinear spatiotemporal features. To solve this issue, an Improved Sparse Autoencoder with Deep Learning (ISAE-DL) and Enriched ISAE-DL (EISAE-DL) models were developed with the combination of concentric circle-based clustering, Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) followed by the ISAE for AQP. In EISAE-DL, concentric circle-based clustering uses Manhattan distance to efficiently split the locations into four regions using its center and cluster the spatially and temporally similar candidate locations. But it was considered a fixed structure and may struggle to find variations in several data points. Also, it accommodate clusters with regular and circular patterns, whereas irregular and non-circular cluster patterns were not handled. Similarly, the ANN inference was often offended or ignored because of complex meteorological characteristics. Hence, this paper proposes a Voronoi-based spatial-temporal sequence similarity with the Conjugate gradient-enabled SAE-DL (VCSAE-DL) model for effective AQP. First, a Voronoi clustering is performed by creating the Voronoi diagram for analogous candidate location clustering. Then, the resultant clusters of location data along with the PM2.5 and other meteorological data are given to the Improved ANN (IANN), and the target stations are given to the LSTM to capture the spatiotemporal relationship features and temporal features, respectively. Also, CNN is used to extract relationships between terrain and air quality features. These extracted features are fused in the merge layer and transferred to the ISAE for final prediction of air quality. Finally, the test outcomes demonstrate that the VCSAE-DL achieves better prediction performance compared to the existing AQP models

    A review of artificial neural network models for ambient air pollution prediction

    Get PDF
    Research activity in the field of air pollution forecasting using artificial neural networks (ANNs) has increased dramatically in recent years. However, the development of ANN models entails levels of uncertainty given the black-box nature of ANNs. In this paper, a protocol by Maier et al. (2010) for ANN model development is presented and applied to assess journal papers dealing with air pollution forecasting using ANN models. The majority of the reviewed works are aimed at the long-term forecasting of outdoor PM10, PM2.5, and oxides of nitrogen, and ozone. The vast majority of the identified works utilised meteorological and source emissions predictors almost exclusively. Furthermore, ad-hoc approaches are found to be predominantly used for determining optimal model predictors, appropriate data subsets and the optimal model structure. Multilayer perceptron and ensemble-type models are predominantly implemented. Overall, the findings highlight the need for developing systematic protocols for developing powerful ANN models

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Spatiotemporal and temporal forecasting of ambient air pollution levels through data-intensive hybrid artificial neural network models

    Get PDF
    Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites.Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites

    A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

    Full text link
    Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. Approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: Forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and, finally, discuss mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting both the foundations, practical applications, and opportunities of graph neural networks for time series analysis.Comment: 27 pages, 6 figures, 5 table

    Spatiotemporal Graph Neural Networks with Uncertainty Quantification for Traffic Incident Risk Prediction

    Full text link
    Predicting traffic incident risks at granular spatiotemporal levels is challenging. The datasets predominantly feature zero values, indicating no incidents, with sporadic high-risk values for severe incidents. Notably, a majority of current models, especially deep learning methods, focus solely on estimating risk values, overlooking the uncertainties arising from the inherently unpredictable nature of incidents. To tackle this challenge, we introduce the Spatiotemporal Zero-Inflated Tweedie Graph Neural Networks (STZITD-GNNs). Our model merges the reliability of traditional statistical models with the flexibility of graph neural networks, aiming to precisely quantify uncertainties associated with road-level traffic incident risks. This model strategically employs a compound model from the Tweedie family, as a Poisson distribution to model risk frequency and a Gamma distribution to account for incident severity. Furthermore, a zero-inflated component helps to identify the non-incident risk scenarios. As a result, the STZITD-GNNs effectively capture the dataset's skewed distribution, placing emphasis on infrequent but impactful severe incidents. Empirical tests using real-world traffic data from London, UK, demonstrate that our model excels beyond current benchmarks. The forte of STZITD-GNN resides not only in its accuracy but also in its adeptness at curtailing uncertainties, delivering robust predictions over short (7 days) and extended (14 days) timeframes
    • …
    corecore