5,620 research outputs found

    A spiking neural network for real-time Spanish vowel phonemes recognition

    Get PDF
    This paper explores neuromorphic approach capabilities applied to real-time speech processing. A spiking recognition neural network composed of three types of neurons is proposed. These neurons are based on an integrative and fire model and are capable of recognizing auditory frequency patterns, such as vowel phonemes; words are recognized as sequences of vowel phonemes. For demonstrating real-time operation, a complete spiking recognition neural network has been described in VHDL for detecting certain Spanish words, and it has been tested in a FPGA platform. This is a stand-alone and fully hardware system that allows to embed it in a mobile system. To stimulate the network, a spiking digital-filter-based cochlea has been implemented in VHDL. In the implementation, an Address Event Representation (AER) is used for transmitting information between neurons.Ministerio de Economía y Competitividad TEC2012-37868-C04-02/0

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio
    corecore