3,920 research outputs found

    Magnification Control in Self-Organizing Maps and Neural Gas

    Get PDF
    We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms: localized learning, concave-convex learning, and winner relaxing learning. Thereby, the approach of concave-convex learning in SOM is extended to a more general description, whereas the concave-convex learning for NG is new. In general, the control mechanisms generate only slightly different behavior comparing both neural algorithms. However, we emphasize that the NG results are valid for any data dimension, whereas in the SOM case the results hold only for the one-dimensional case.Comment: 24 pages, 4 figure

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    On delayed genetic regulatory networks with polytopic uncertainties: Robust stability analysis

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the robust asymptotic stability problem of genetic regulatory networks with time-varying delays and polytopic parameter uncertainties. Both cases of differentiable and nondifferentiable time-delays are considered, and the convex polytopic description is utilized to characterize the genetic network model uncertainties. By using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain delayed genetic networks are established in the form of LMIs, which can be readily verified by using standard numerical software. An important feature of the results reported here is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using up-to-date techniques for achieving delay dependence. Another feature of the results lies in that a novel Lyapunov functional dependent on the uncertain parameters is utilized, which renders the results to be potentially less conservative than those obtained via a fixed Lyapunov functional for the entire uncertainty domain. A genetic network example is employed to illustrate the applicability and usefulness of the developed theoretical results

    A novel Boolean kernels family for categorical data

    Get PDF
    Kernel based classifiers, such as SVM, are considered state-of-the-art algorithms and are widely used on many classification tasks. However, this kind of methods are hardly interpretable and for this reason they are often considered as black-box models. In this paper, we propose a new family of Boolean kernels for categorical data where features correspond to propositional formulas applied to the input variables. The idea is to create human-readable features to ease the extraction of interpretation rules directly from the embedding space. Experiments on artificial and benchmark datasets show the effectiveness of the proposed family of kernels with respect to established ones, such as RBF, in terms of classification accuracy

    Efficient Image Processing Via Compressive Sensing Of Integrate-And-Fire Neuronal Network Dynamics

    Get PDF
    Integrate-and-fire (I&F) neuronal networks are ubiquitous in diverse image processing applications, including image segmentation and visual perception. While conventional I&F network image processing requires the number of nodes composing the network to be equal to the number of image pixels driving the network, we determine whether I&F dynamics can accurately transmit image information when there are significantly fewer nodes than network input-signal components. Although compressive sensing (CS) theory facilitates the recovery of images using very few samples through linear signal processing, it does not address whether similar signal recovery techniques facilitate reconstructions through measurement of the nonlinear dynamics of an I&F network. In this paper, we present a new framework for recovering sparse inputs of nonlinear neuronal networks via compressive sensing. By recovering both one-dimensional inputs and two-dimensional images, resembling natural stimuli, we demonstrate that input information can be well-preserved through nonlinear I&F network dynamics even when the number of network-output measurements is significantly smaller than the number of input-signal components. This work suggests an important extension of CS theory potentially useful in improving the processing of medical or natural images through I&F network dynamics and understanding the transmission of stimulus information across the visual system

    Bidding Strategy with Forecast Technology Based on Support Vector Machine in Electrcity Market

    Full text link
    The participants of the electricity market concern very much the market price evolution. Various technologies have been developed for price forecast. SVM (Support Vector Machine) has shown its good performance in market price forecast. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecast accuracy, with which the being rejected risk is defined. The other takes into account the impact of the producer's own bid. The risks associated with the bidding are controlled by the parameters setting. The proposed approaches have been tested on a numerical example.Comment: 8pages, 13figures, paper for the conference "Applications of Physics in Financial Analysis 6th International Conference

    Learning Sparse Adversarial Dictionaries For Multi-Class Audio Classification

    Full text link
    Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a discriminative term into the objective function in order to learn class-specific adversarial dictionaries that are good at representing samples of their own class at the same time poor at representing samples belonging to any other class. We quantitatively demonstrate the effectiveness of our learned dictionaries as a stand-alone solution for both binary as well as multi-class audio classification problems.Comment: Accepted in Asian Conference of Pattern Recognition (ACPR-2017
    • …
    corecore