3,977 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Morphological Network: How Far Can We Go with Morphological Neurons?

    Full text link
    In recent years, the idea of using morphological operations as networks has received much attention. Mathematical morphology provides very efficient and useful image processing and image analysis tools based on basic operators like dilation and erosion, defined in terms of kernels. Many other morphological operations are built up using the dilation and erosion operations. Although the learning of structuring elements such as dilation or erosion using the backpropagation algorithm is not new, the order and the way these morphological operations are used is not standard. In this paper, we have theoretically analyzed the use of morphological operations for processing 1D feature vectors and shown that this gets extended to the 2D case in a simple manner. Our theoretical results show that a morphological block represents a sum of hinge functions. Hinge functions are used in many places for classification and regression tasks (Breiman (1993)). We have also proved a universal approximation theorem -- a stack of two morphological blocks can approximate any continuous function over arbitrary compact sets. To experimentally validate the efficacy of this network in real-life applications, we have evaluated its performance on satellite image classification datasets since morphological operations are very sensitive to geometrical shapes and structures. We have also shown results on a few tasks like segmentation of blood vessels from fundus images, segmentation of lungs from chest x-ray and image dehazing. The results are encouraging and further establishes the potential of morphological networks.Comment: 35 pages, 19 figures, 7 table

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore