5,186 research outputs found

    A numerical model for Hodgkin-Huxley neural stimulus reconstruction

    Get PDF
    The information about a neural activity is encoded in a neural response and usually the underlying stimulus that triggers the activity is unknown. This paper presents a numerical solution to reconstruct stimuli from Hodgkin-Huxley neural responses while retrieving the neural dynamics. The stimulus is reconstructed by first retrieving the maximal conductances of the ion channels and then solving the Hodgkin-Huxley equations for the stimulus. The results show that the reconstructed stimulus is a good approximation of the original stimulus, while the retrieved the neural dynamics, which represent the voltage-dependent changes in the ion channels, help to understand the changes in neural biochemistry. As high non-linearity of neural dynamics renders analytical inversion of a neuron an arduous task, a numerical approach provides a local solution to the problem of stimulus reconstruction and neural dynamics retrieval

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    • …
    corecore