32 research outputs found

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    Design and evaluation of a biologically-inspired cloud elasticity framework

    Get PDF
    The elasticity in cloud is essential to the effective management of computational resources as it enables readjustment at runtime to meet application demands. Over the years, researchers and practitioners have proposed many auto-scaling solutions using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. The existing methods suffer from issues like: (1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; (2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and (3) the lack of considering uncertainty aspects while designing auto-scaling solutions. In this paper, we aim to address these issues using a holistic biologically-inspired feedback switch controller. This method utilises multiple controllers and a switching mechanism, implemented using fuzzy system, that realises the selection of suitable controller at runtime. The fuzzy system also facilitates the design of qualitative elasticity rules. Furthermore, to improve the possibility of avoiding the oscillatory behaviour (a problem commonly associated with switch methodologies), this paper integrates a biologically-inspired computational model of action selection. Lastly, we identify seven different kinds of real workload patterns and utilise them to evaluate the performance of the proposed method against the state-of-the-art approaches. The obtained computational results demonstrate that the proposed method results in achieving better performance without incurring any additional cost in comparison to the state-of-the-art approaches

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Optimization of non-linear control aerodynamic systems using metaheuristic algorithm Optimisation des commandes non linéaires des systèmes aérodynamiques par les méthodes méta-heuristiques

    Get PDF
    This thesis is part of the project "modelisation and control dynamic systems" carried by the laboratory of LMSE. This project aims to develop and optimize new control approaches for the UAV quadrotor tracking control. This thesis consisted of the modelling of the quadrotor, and then analysing, designing and implementing new optimal control strategies based on the model-free concept. In this context, the aim of the thesis is to propose new control strategies based on the model-free concept. The proposed strategies help to compensate the disturbances and model uncertainties. Regarding our work, we have proposed different control techniques for quadrotor control. First, an optimal model-free backstepping control law applied to a quadrotor UAV has been proposed. In addition to this work, the dynamic system has been estimated through a new proposed fuzzy strategy and merged with the BC under the model-free concept. Finally, an optimal fuzzy model-free control has been designed based on decentralized fuzzy control. The objective of these control strategies is to achieve the best tracking with unknown nonlinear dynamics and external disturbances. These proposed approaches are validated through analytical and experimental procedures and the effectiveness checked and compared with regard to the related controllers in the presence of disturbances and model uncertainties

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions.EThOS - Electronic Theses Online ServiceBiruni Remote Sensing Centre, LibyaGBUnited Kingdo

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Distributed sensing in flexible robotic fins: propulsive force prediction and underwater contact sensing

    Get PDF
    There is recent biological evidence that the pectoral fins of bluegill sunfish are innervated with nerves that respond to bending, and these fish contact obstacles with their fins. However, it is not known how fin-intrinsic sensing could be used to mediate propulsion and touch in engineered fins. The objective of this thesis is to understand the use of distributed sensing in robotic fins, inspired by bony fish fins, for the prediction of propulsive forces and for the discrimination between fluidic loading and contact loading during underwater touch. The research integrates engineering and biology and builds an understanding of fin-intrinsic sensing through study of swimming fish and robotic models of fish fins and sensors. Multiple studies identify which sensor types, sensor placement locations, and model conditions are best for predicting fin propulsive forces and for predicting the state of contact. Comparisons are made between linear and nonlinear Volterra-series convolution models to represent the mapping from sensory data to forces. Best practices for instrumentation and model selection are extracted for a broad range of swimming conditions on a complex, multi-DOF, flexible fin. This knowledge will guide the development of multi-functional systems to navigate and propel through complex, occluded, underwater environments and for sensing and responding to environmental perturbations and obstacles.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201
    corecore