1,646 research outputs found

    Strain specific effects of low level lead exposure on associative learning and memory in rats.

    Get PDF
    Exposure to lead (Pb) remains a significant public health concern. Lead exposure in early life impairs the normal development of numerous cognitive and neurobehavioral processes. Previous work has shown that the effects of developmental Pb exposure on gene expression patterns in the brain are modulated by various factors including the developmental timing of the exposure, level of exposure, sex, and genetic background. Using gene microarray profiling, we previously reported a significant strain-specific effect of Pb exposure on the hippocampal transcriptome, with the greatest number of differentially expressed transcripts in Long Evans (LE) rats and the fewest in Sprague Dawley (SD) rats. The present study examined the extent to which this differential effect of Pb on hippocampal gene expression might influence behavior. Animals (males and females) were tested in a trace fear conditioning paradigm to evaluate effects of Pb exposures (perinatal (PERI; gestation to postnatal day 21) or early postnatal (EPN; postnatal day 1 to day 21)) on associative learning and memory. All animals (Pb-exposed and non-Pb-exposed controls) showed normal acquisition of the conditioned stimulus (tone)-unconditioned stimulus (footshock) association. Long Evans rats showed a significant deficit in short- and long-term recall, influenced by sex and the timing of Pb exposure (PERI or EPN). In contrast, Pb exposure had no significant effect on memory consolidation or recall in any SD rats. These results further demonstrate the important influence of genetic background to the functional outcomes from developmental Pb exposure

    State anxiety modulates the return of fear

    Get PDF
    Current treatments for anxiety disorders are effective but limited by the high frequency of clinical relapse. Processes underlying relapse are thought to be experimentally modeled in fear conditioning experiments with return fear (ROF) inductions. Thereby reinstatement-induced ROF might be considered a model to study mechanisms underlying adversity-induced relapse. Previous studies have reported differential ROF (i.e. specific for the danger stimulus) but also generalized ROF (i.e. for safe and danger stimuli), but reasons for these divergent findings are not clear yet. Hence, the response pattern (i.e. differential or generalized) following reinstatement may be of importance for the prediction of risk or resilience for ROF. The aim of this study was to investigate state anxiety as a potential individual difference factor contributing to differentiability or generalization of return of fear. Thirty-six participants underwent instructed fear expression, extinction and ROF induction through reinstatement while physiological (skin conductance response, fear potentiated startle) and subjective measures of fear and US expectancy were acquired. Our data show that, as expected, high state anxious individuals show deficits in SCR discrimination between dangerous and safe cues after reinstatement induced ROF (i.e. generalization) as compared to low state anxious individuals. The ability to maintain discrimination under aversive circumstances is negatively associated with pathological anxiety and predictive of resilient responding while excessive generalization is a hallmark of anxiety disorders. Therefore, we suggest that experimentally induced ROF might prove useful in predicting relapse risk in clinical settings and might have implications for possible interventions for relapse prevention

    Neurocognitive Mechanisms of Fear Conditioning and Vulnerability to Anxiety

    Get PDF
    A commentary on Fear-conditioning mechanisms associated with trait vulnerability to anxiety in human

    Fear expression and return of fear following threat instruction with or without direct contingency experience

    Get PDF
    Prior research showed that mere instructions about the contingency between a conditioned stimulus (CS) and an unconditioned stimulus (US) can generate fear reactions to the CS. Little is known, however, about the extent to which actual CS US contingency experience adds anything beyond the effect of contingency instructions. Our results extend previous studies on this topic in that it included fear potentiated startle as an additional dependent variable and examined return of fear (ROF) following reinstatement. We observed that CS US pairings can enhance fear reactions beyond the effect of contingency instructions. Moreover, for all measures of fear, instructions elicited immediate fear reactions that could not be completely overridden by subsequent situational safety information. Finally, ROF following reinstatement for instructed CS+s was unaffected by actual experience. In summary, our results demonstrate the power of contingency instructions and reveal the additional impact of actual experience of CS US pairings

    Neural Substrates of Fear Generalization and Its Associations with Anxiety and Intolerance of Uncertainty

    Get PDF
    Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to perceptual similarity to a learned threat – is an adaptive process. Overgeneralization, however, is maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research has indicated several regions sensitive to effects of generalization, including regions involved in fear excitation (e.g., amygdala, insula) and inhibition (e.g., ventromedial prefrontal cortex). Research has suggested several other small brain regions may play an important role in this process (e.g., hippocampal subfields, bed nucleus of the stria terminalis [BNST], habenula), but, to date, these regions have not been examined during fear generalization due to limited spatial resolution of standard human neuroimaging. To this end, the proposed project utilized high resolution spatial resolution of 7T fMRI to (1) characterize the neural circuits involved in threat discrimination and generalization, and (2) examine modulating effects of trait anxiety and intolerance of uncertainty on neural activation during threat generalization. In a sample of 31 healthy undergraduate students, significant positive generalization effects (i.e., greater activation for stimuli with increasing perceptual similarity to a learned threat cue) were observed in the visual cortex, thalamus, habenula and BNST, while negative generalization effects were observed in the dentate gyrus, CA1, CA3, and basal nucleus of the amygdala. Associations with individual differences were limited, though greater generalization in the insula and primary somatosensory cortex was correlated with self-reported anxiety. Overall, findings largely support previous neuroimaging work on fear generalization and provide additional insight into the contributions of several previously unexplored brain regions

    Generalization of fear-potentiated startle in the presence of auditory cues: a parametric analysis

    Get PDF
    Intense fear responses observed in trauma-, stressor-, and anxiety-related disorders can be elicited by a wide range of stimuli similar to those that were present during the traumatic event. The present study investigated the experimental utility of fear-potentiated startle paradigms to study this phenomenon, known as stimulus generalization, in healthy volunteers. Fear-potentiated startle refers to a relative increase in the acoustic startle response to a previously neutral stimulus that has been paired with an aversive stimulus. Specifically, in Experiment 1 an auditory pure tone (500 Hz) was used as the conditioned stimulus (CS+) and was reinforced with an unconditioned stimulus (US), an airblast to the larynx. A distinct tone (4000 Hz) was used as the nonreinforced stimulus (CS-) and was never paired with an airblast. Twenty-four hours later subjects underwent Re-training followed by a Generalization test, during which subjects were exposed to a range of generalization stimuli (250, 1000, 2000, 4000, 8000 Hz). In order to further examine the point at which fear no longer generalizes, a follow-up experiment (Experiment 2) was performed where a 4000 Hz pure tone was used as the CS+, and during the Generalization test, 2000 and 8000 Hz were used as generalization stimuli. In both Experiment 1 and 2 there was significant discrimination in US expectancy responses on all stimuli during the Generalization Test, indicating the stimuli were perceptually distinct. In Experiment 1, participants showed similar levels of fear-potentiated startle to the generalization stimuli that were adjacent to the CS+, and discriminated between stimuli that were 2 or more degrees from the CS+. Experiment 2 demonstrated no fear-potentiated startle generalization. The current study is the first to use auditory cues to test generalization of conditioned fear responses; such cues may be especially relevant to combat PTSD where much of the traumatic exposure may involve sounds
    • 

    corecore