1,390 research outputs found

    Low attentional engagement makes attention network activity susceptible to emotional interference

    Get PDF
    The aim of this study was to investigate whether emotion-attention interaction depends on attentional engagement. To investigate emotional modulation of attention network activation, we used a functional MRI paradigm consisting of a visuospatial attention task with either frequent (high-engagement) or infrequent (low-engagement) targets and intermittent emotional or neutral distractors. The attention task recruited a bilateral frontoparietal network with no emotional interference on network activation when the attentional engagement was high. In contrast, when the attentional engagement was low, the unpleasant stimuli interfered with the activation of the frontoparietal attention network, especially in the right hemisphere. This study provides novel evidence for low attentional engagement making attention control network activation susceptible to emotional interference. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.Fil: Exposito, Veronica. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Tampere; FinlandiaFil: Pickard, Natasha. California State University; Estados UnidosFil: Solbakk, Anne-Kristin. University of Oslo; NoruegaFil: Ogawa, Keith H.. Saint Mary's College Of California; Estados UnidosFil: Knight, Robert T.. California State University; Estados UnidosFil: Hartikainen, Kaisa M.. Universidad de Tampere; Finlandi

    Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation

    Get PDF
    Neuroimaging and transcranial magnetic stimulation (TMS) studies have implicated a dorsal fronto-parietal network in endogenous attention control and a more ventral set of areas in exogenous attention shifts. However, the extent and circumstances under which these cortical networks overlap and/or interact remain unclear. Crucially, whereas previous studies employed experimental designs that tend to confound exogenous with endogenous attentional engagement, we used a cued target discrimination paradigm that behaviourally dissociates exogenous from endogenous attention processes. Participants engaged with endogenous attention cues, while simultaneous apparent motion cues were driving exogenous attention along the motion path towards or away from the target position. To interfere with dorsal or ventral attention networks, we delivered neuronavigated double-pulse TMS over either right intraparietal sulcus (rIPS) or right temporo-parietal junction (rTPJ) towards the end of the cue target interval, and compared the effects to a sham-TMS condition. For sham-TMS, endogenous and exogenous cueing both benefitted discrimination accuracy. Target discrimination was enhanced at validly versus invalidly cued locations (endogenous cueing benefit) as well as when targets appeared in versus out of the motion path (exogenous cueing benefit), despite motion being uninformative and task-irrelevant, replicating previous findings. Interestingly, both rIPS- and rTPJ-TMS abolished attention benefits from exogenous cueing, while endogenous cueing benefits were unaffected. Our findings provide evidence against independent involvement of the dorsal and ventral attention network nodes in exogenous attention processes

    Automatic visuospatial attention shifts: Perceptual correlates, interventions and oscillatory signatures

    Get PDF
    Our visual perception is shaped by both external and internal factors, which continuously compete for limited neural resources. Salient external (exogenous) events capture our attention automatically, whereas internal (endogenous) attention can be directed towards sensory events according to our current behavioural goals. Advances in neuroimaging and brain stimulation have allowed us to begin to map the underlying functional neural architecture mediating both exogenously driven and endogenously controlled visual attention, including electrophysiological techniques such as electroencephalography and magnetoencephalography (EEG/MEG). However, while the neural EEG/MEG correlates of endogenously controlled attention have been investigated in much detail, the neural EEG/MEG correlates of exogenously driven attention are substantially less well understood. One reason for this is that exogenously driven effects are difficult to isolate from the influence of endogenous control processes. In a series of three experiments, I sought to: 1) Study how the perceptual outcomes of both endogenously and exogenously driven attention can be effectively dissociated and investigated. 2) Provide a better understanding of the functional architecture of attention control in regards to its underlying neural substrates and oscillatory signatures, particularly when exogenously driven. To this end, I employed a visuospatial attention paradigm which, by design, behaviourally dissociates exogenous from endogenously driven effects (experiment 1). Furthermore, by utilizing the same behavioural paradigm in combination with neuronavigated MRI-based transcranial magnetic stimulation (TMS) over two key attentional network nodes (i.e., the right intraprarietal sulcus and right temporo-parietal junction), I probed the extent to which the neural substrates of endogenous vs. exogenous orienting are overlapping or can be dissociated (experiment 2). Lastly, I used electroencephalography (EEG) to investigate the oscillatory signatures underlying attention in a task which is typically employed to study exogenous orienting and which putatively triggers exogenous attention in isolation (experiment 3). The results revealed that while exogenous attentional processes can be behaviourally dissociated from endogenous attention (experiment 1), the neural substrates of exogenous attention appear to cover a wide network of attention areas. This includes nodes in both the right ventral attention network (i.e., right temporo-parietal junction) but also the right dorsal network (i.e., the right intraparietal sulcus), which has predominantly been associated with endogenous attention control (experiment 2). Interestingly, even in tasks that have been utilized to test exogenous attentional effects in isolation, endogenous control processes, as indexed by increased mid-frontal theta-band activity, can heavily influence the behavioural outcome (experiment 3). Based on these results, I conclude that there appears to be strong interplay between endogenous control and exogenously driven attention processes. These findings highlight that in order to better understand the functional architecture of (purely) exogenously driven effects, we need to effectively account for the potential influence of endogenous control. One approach to achieve this is by manipulating both types of attention simultaneously instead of in separation, as illustrated in the present work

    Developmental differences in the control of action selection by social information

    Get PDF
    Our everyday actions are often performed in the context of a social interaction. We previously showed that, in adults, selecting an action on the basis of either social or symbolic cues was associated with activations in the fronto-parietal cognitive control network, whereas the presence and use of social versus symbolic cues was in addition associated with activations in the temporal and medial prefrontal cortex (MPFC) social brain network. Here we investigated developmental changes in these two networks. Fourteen adults (21–30 years of age) and 14 adolescents (11–16 years) followed instructions to move objects in a set of shelves. Interpretation of the instructions was conditional on the point of view of a visible “director” or the meaning of a symbolic cue (Director Present vs. Director Absent) and the number of potential referent objects in the shelves (3-object vs. 1-object). 3-object trials elicited increased fronto-parietal and temporal activations, with greater left lateral prefrontal cortex and parietal activations in adults than adolescents. Social versus symbolic information led to activations in superior dorsal MPFC, precuneus, and along the superior/middle temporal sulci. Both dorsal MPFC and left temporal clusters exhibited a Director × Object interaction, with greater activation when participants needed to consider the directors' viewpoints. This effect differed with age in dorsal MPFC. Adolescents showed greater activation whenever social information was present, whereas adults showed greater activation only when the directors' viewpoints were relevant to task performance. This study thus shows developmental differences in domain-general and domain-specific PFC activations associated with action selection in a social interaction context

    Lateral parietal contributions to memory impairment in posterior cortical atrophy

    Get PDF
    Objective: Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterised by progressive impairment in visuospatial and perceptual function. Recent findings show that memory functioning can also be compromised early in the course of disease. In this study, we investigated the neural basis of memory impairment in PCA, and hypothesised that correlations would be observed with parietal cortex rather than classic medial temporal memory structures. Methods: Eighteen PCA patients, 15 typical Alzheimer's disease (tAD) patients and 21 healthy controls underwent memory testing with the Rey Auditory Verbal Learning Test (RAVLT) word list and MRI. Voxel-based morphometry (VBM) was used to identify regions in the parietal and medial temporal lobes that correlated with memory performance. Results: Compared with controls, PCA patients were impaired at learning, immediate and delayed recall and recognition of the RAVLT. Learning rate and immediate recall was significantly better in PCA compared to tAD, whereas there was no difference in delayed recall. Recognition memory also was not statistically different between patient groups, but PCA patients made significantly more false positive errors than tAD patients. VBM analysis in the PCA patients revealed a significant correlation between total learning and grey matter density in the right supramarginal gyrus, right angular gyrus and left postcentral gyrus. The left post central gyrus also significantly correlated with immediate and delayed recall and with recognition memory. No correlations were detected in the medial temporal lobe. Conclusions: The findings provide novel evidence that early verbal memory impairment is frequently observed in PCA, and is associated with damage to lateral parietal structures. The results have implications for the diagnosis and management of PCA

    Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven’s Advanced Progressive Matrices

    Get PDF
    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain

    Dynamic Spatial Coding within the Dorsal Frontoparietal Network during a Visual Search Task

    Get PDF
    To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect

    Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording

    Get PDF
    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone
    • 

    corecore