112,010 research outputs found

    Critically Evaluating Website Credibility: Factors that Influence Perceptions of Online Mental Health Information

    Get PDF
    Research on the use of online information has suggested that general users of the internet do not critically evaluate the information they consume. In addition, specific elements of online information, such as the presence of advertisements, has been shown to affect perceptions of that information, resulting in less favorable ratings of websites. In contrast, communication studies have shown that perceptions of the presented information increased favorably when an image of a brain was included even when the actual information was considered insufficient in quality by experts. To date, the combined effects of brain images and advertisements on evaluations of online mental health information have not been studied. In the current study, participants from Central Washington University and the general public were randomly assigned to view a neuroimage, an advertisement, both a neuroimage and advertisement, or no neuroimage or advertisement along with an article from a website discussing the neuroscience underlying depression. I hypothesized that participants would rate the presented webpage and its information more favorably when a neuroimage was present and less favorably when an advertisement was present. Contrary to expectations, participants in this study rated the webpage higher when there was no neuroimage present, compared to when there was a neuroimage present. Specifically, participants rated their ability to identify with the webpage information and the presentation of the webpage’s information higher when there was no neuroimage present. Participant responses were also influenced by their perceptions of sharing mental health experiences online, how many hours on average they spent online daily, and whether they were currently experiencing symptoms of depression. The current findings demonstrate that investigations of the perception of online information is not only complex, but that there is a need for more research on how website variables affect people’s perceptions of online mental health information

    Neuroimage

    Get PDF
    The brain can be considered as an information processing network, where complex behavior manifests as a result of communication between large-scale functional systems such as visual and default mode networks. As the communication between brain regions occurs through underlying anatomical pathways, it is important to define a "traffic pattern" that properly describes how the regions exchange information. Empirically, the choice of the traffic pattern can be made based on how well the functional connectivity between regions matches the structural pathways equipped with that traffic pattern. In this paper, we present a multimodal connectomics paradigm utilizing graph matching to measure similarity between structural and functional connectomes (derived from dMRI and fMRI data) at node, system, and connectome level. Through an investigation of the brain's structure-function relationship over a large cohort of 641 healthy developmental participants aged 8-22 years, we demonstrate that communicability as the traffic pattern describes the functional connectivity of the brain best, with large-scale systems having significant agreement between their structural and functional connectivity patterns. Notably, matching between structural and functional connectivity for the functionally specialized modular systems such as visual and motor networks are higher as compared to other more integrated systems. Additionally, we show that the negative functional connectivity between the default mode network (DMN) and motor, frontoparietal, attention, and visual networks is significantly associated with its underlying structural connectivity, highlighting the counterbalance between functional activation patterns of DMN and other systems. Finally, we investigated sex difference and developmental changes in brain and observed that similarity between structure and function changes with development.S10 OD023495/CD/ODCDC CDC HHS/United StatesR01 HD089390/HD/NICHD NIH HHS/United StatesR01 NS096606/NS/NINDS NIH HHS/United StatesS10 OD023495/OD/NIH HHS/United StatesRC2 MH089983/MH/NIMH NIH HHS/United States2020-10-01T00:00:00Z31141738PMC66889608401vault:3371

    Neuroimage

    Get PDF
    ObjectivesThe lenticulostriate arteries (LSAs) with small diameters of a few hundred microns take origin directly from the high flow middle cerebral artery (MCA), making them especially susceptible to damage (e.g. by hypertension). This study aims to present high resolution (isotropic ~0.5 mm), black blood MRI for the visualization and characterization of LSAs at both 3T and 7T.Materials and MethodsT1-weighted 3D turbo spin-echo with variable flip angles (T1w TSE-VFA) sequences were optimized for the visualization of LSAs by performing extended phase graph (EPG) simulations. Twenty healthy volunteers (15 under 35 years old, 5 over 60 years old) were imaged with the T1w TSE-VFA sequences at both 3T and 7T. Contrast-to-noise ratio (CNR) was quantified, and LSAs were manually segmented using ITK-SNAP. Automated Reeb graph shape analysis was performed to extract features including vessel length and tortuosity. All quantitative metrics were compared between the two field strengths and two age groups using ANOVA.ResultsLSAs can be clearly delineated using optimized 3D T1w TSE-VFA at 3T and 7T, and a greater number of LSA branches can be detected compared to those by time-of-flight MR angiography (TOF MRA) at 7T. The CNR of LSAs was comparable between 7T and 3T. T1w TSE-VFA showed significantly higher CNR than TOF MRA at the stem portion of the LSAs branching off the medial middle cerebral artery. The mean vessel length and tortuosity were greater on TOF MRA compared to TSE-VFA. The number of detected LSAs by both TSE-VFA and TOF MRA was significantly reduced in aged subjects, while the mean vessel length measured on 7T TSE-VFA showed significant difference between the two age groups.ConclusionThe high-resolution black-blood 3D T1w TSE-VFA sequence offers a new method for the visualization and quantification of LSAs at both 3T and 7T, which may be applied for a number of pathological conditions related to the damage of LSAs.P41 EB015922/EB/NIBIB NIH HHS/United StatesUH2 NS100614/NS/NINDS NIH HHS/United StatesS10 OD025312/OD/NIH HHS/United StatesS10 OD025312/CD/ODCDC CDC HHS/United StatesK25 AG056594/AG/NIA NIH HHS/United StatesUH3 NS100614/NS/NINDS NIH HHS/United StatesP01 AG052350/AG/NIA NIH HHS/United States2020-10-01T00:00:00Z31158475PMC66889588401vault:3371

    Neuroimage

    Get PDF
    Threat-related emotional function is supported by a neural circuit that includes the prefrontal cortex (PFC), hippocampus, and amygdala. The function of this neural circuit is altered by negative life experiences, which can potentially affect threat-related emotional processes. Notably, Black-American individuals disproportionately endure negative life experiences compared to White-American individuals. However, the relationships among negative life experiences, race, and the neural substrates that support threat-related emotional function remains unclear. Therefore, the current study investigated whether the brain function that supports threat-related emotional processes varies with racial differences in negative life experiences. In the present study, adolescent violence exposure, family income, and neighborhood disadvantage were measured prospectively (i.e., at 11-19 years of age) for Black-American and White-American volunteers. Participants then, as young adults (i.e., 18-23 years of age), completed a Pavlovian fear conditioning task during functional magnetic resonance imaging (fMRI). Cued and non-cued threats were presented during the conditioning task and behavioral (threat expectancy) and psychophysiological responses (skin conductance response; SCR) were recorded simultaneously with fMRI. Racial differences were observed in neural (fMRI activity), behavioral (threat expectancy), and psychophysiological (SCR) responses to threat. These threat-elicited responses also varied with negative life experiences (violence exposure, family income, and neighborhood disadvantage). Notably, racial differences in brain activity to threat were smaller after accounting for negative life experiences. The present findings suggest that racial differences in the neural and behavioral response to threat are due, in part, to exposure to negative life experiences and may provide new insight into the mechanisms underlying racial disparities in mental health.U19 DP002664/DP/NCCDPHP CDC HHS/United StatesU48 DP000046/DP/NCCDPHP CDC HHS/United StatesU48 DP000057/DP/NCCDPHP CDC HHS/United StatesU19 DP002663/DP/NCCDPHP CDC HHS/United StatesU48 DP000056/DP/NCCDPHP CDC HHS/United StatesR01 MH098348/MH/NIMH NIH HHS/United StatesT32 MH100019/MH/NIMH NIH HHS/United StatesU19 DP002665/DP/NCCDPHP CDC HHS/United States2020-11-15T00:00:00Z31401241PMC6819267866

    Sound-Induced Flash Illusion is Resistant to Feedback Training

    Get PDF
    A single flash accompanied by two auditory beeps tends to be perceived as two flashes (Shams et al. Nature 408:788, 2000, Cogn Brain Res 14:147–152, 2002). This phenomenon is known as ‘sound-induced flash illusion.’ Previous neuroimaging studies have shown that this illusion is correlated with modulation of activity in early visual cortical areas (Arden et al. Vision Res 43(23):2469–2478, 2003; Bhattacharya et al. NeuroReport 13:1727–1730, 2002; Shams et al. NeuroReport 12(17):3849–3852, 2001, Neurosci Lett 378(2):76–81, 2005; Watkins et al. Neuroimage 31:1247–1256, 2006, Neuroimage 37:572–578, 2007; Mishra et al. J Neurosci 27(15):4120–4131, 2007). We examined how robust the illusion is by testing whether the frequency of the illusion can be reduced by providing feedback. We found that the sound-induced flash illusion was resistant to feedback training, except when the amount of monetary reward was made dependent on accuracy in performance. However, even in the latter case the participants reported that they still perceived illusory two flashes even though they correctly reported single flash. Moreover, the feedback training effect seemed to disappear once the participants were no longer provided with feedback suggesting a short-lived refinement of discrimination between illusory and physical double flashes rather than vanishing of the illusory percept. These findings indicate that the effect of sound on the perceptual representation of visual stimuli is strong and robust to feedback training, and provide further evidence against decision factors accounting for the sound-induced flash illusion

    Is anterior N2 enhancement a reliable electrophysiological index of concealed information?

    Get PDF
    publisher: Elsevier articletitle: Is anterior N2 enhancement a reliable electrophysiological index of concealed information? journaltitle: NeuroImage articlelink: http://dx.doi.org/10.1016/j.neuroimage.2016.08.042 content_type: article copyright: © 2016 Elsevier Inc. All rights reserved

    Neuroimage

    Get PDF
    The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20–88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging. © 2022Initiative d'excellence de l'Université de Bordeau

    Ten simple rules for reporting voxel-based morphometry studies

    Get PDF
    Voxel-based morphometry [Ashburner, J. and Friston, K.J., 2000. Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1), 805–821] is a commonly used tool for studying patterns of brain change in development or disease and neuroanatomical correlates of subject characteristics. In performing a VBM study, many methodological options are available; if the study is to be easily interpretable and repeatable, the processing steps and decisions must be clearly described. Similarly, unusual methods and parameter choices should be justified in order to aid readers in judging the importance of such options or in comparing the work with other studies. This editorial suggests core principles that should be followed and information that should be included when reporting a VBM study in order to make it transparent, replicable and useful
    • …
    corecore