948 research outputs found

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input–output delay, and precision, performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called multiplexing fuzzy controller (MFCON), has been realized in a CMOS 0.7 um standard technology. It has two inputs, implements 64 rules, and features 500 ns of input to output delay with 16-mW of power consumption. Results from the chip in a control application with a dc motor are also provided

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This Paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input-output delay and precision performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core [1]. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called MFCON, has been realized in a CMOS 0.7μm standard technology. It has two inputs, implements 64 rules and features 500ns of input to output delay with 16mW of power consumption. Results from the chip in a control application with a DC motor are also provided

    Noise-based information processing: Noise-based logic and computing: what do we have so far?

    Full text link
    We briefly introduce noise-based logic. After describing the main motivations we outline classical, instantaneous (squeezed and non-squeezed), continuum, spike and random-telegraph-signal based schemes with applications such as circuits that emulate the brain functioning and string verification via a slow communication channel.Comment: Invited talk at the 21st International Conference on Noise and Fluctuations, Toronto, Canada, June 12-16, 201

    Spike Events Processing for Vision Systems

    Get PDF
    In this paper we briefly summarize the fundamental properties of spike events processing applied to artificial vision systems. This sensing and processing technology is capable of very high speed throughput, because it does not rely on sensing and processing sequences of frames, and because it allows for complex hierarchically structured cortical-like layers for sophisticated processing. The paper includes a few examples that have demonstrated the potential of this technology for highspeed vision processing, such as a multilayer event processing network of 5 sequential cortical-like layers, and a recognition system capable of discriminating propellers of different shape rotating at 5000 revolutions per second (300000 revolutions per minute)

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Algorithms for CAD Tools VLSI Design

    Get PDF

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc
    corecore