35,433 research outputs found

    VLSI design of universal approximator neuro-fuzzy systems

    Get PDF
    Neuro-fuzzy systems can theoretically solve any problem since they are universal approximators. Besides, they combine the advantages of the neuro and fuzzy paradigms. This paper describes and compares the different strategies that can be adopted to implement the learning and inference mechanisms involved in a neuro-fuzzy system. CAD tools, most of them integrated into the fuzzy system development environment Xfuzzy 2.0, have been developed to assist the designer in the implementation of neuro-fuzzy systems in FPGAs or ASICs.Comisión Interministerial de Ciencia y Tecnología TIC98-0869Fondo Europeo de Desarrollo Regional 1FD97-0956-C3-02

    Fruit production forecasting by neuro-fuzzy techniques

    Get PDF
    Neuro-fuzzy techniques are finding a practical application in many fields such as in model identification and forecasting of linear and non-linear systems. This paper presents a neuro-fuzzy model for forecasting the fruit production of some agriculture products (olives, lemons, oranges, cherries and pistachios). The model utilizes a time series of yearly data. The fruit forecasting is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a combination of the least-squares method and the backprobagation gradient descent method to estimate the optimal food forecast parameters for each year. The results are compared to those of an Autoregressive (AR) model and an Autoregressive Moving Average model (ARMA).Fruit forecasting, neuro-fuzzy, ANFIS, AR, ARMA, forecasting, fruit production, Agricultural Finance, Crop Production/Industries,

    Using an adaptive neuro-fuzzy inference system for the classification of hypertension

    Get PDF
    In this work, neuro-fuzzy systems are compared to standard machine learning algorithms to predict the hypertension risk level. Hypertension is a cardiovascular disease, which should be continuously monitored to avoid the worsening of its symptoms. Automatic techniques are useful to support the clinicians in this task, however, most of the machine learning techniques behave like black boxes, thus they are not able to explain how their results have been obtained. In the medical domain, this is a critical factor, and explainability is demanded. Neuro-fuzzy systems, that combine Neural Networks (NNs) and Fuzzy Inference Systems (FISs), are used to obtain explainable results. Moreover, to enhance the explanation, a feature selection method has been used to reduce the number of relevant features and thus the overall number of fuzzy rules. Qualitative analyses have shown comparable results between the machine learning methods and the neuro-fuzzy systems. However, the neuro-fuzzy systems are able to explain the hypertension risk level with only nine fuzzy rules, which are easy to interpret since they use linguistic terms

    A neuro-fuzzy approach as medical diagnostic interface

    Get PDF
    In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and other medically trained people. As an example, a liver disease diagnosis system is presented

    Approximation properties of the neuro-fuzzy minimum function

    Get PDF
    The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling applications has generally been limited to functions based upon the multiplicative fuzzy implication rule for theoretical and computational reasons. We derive a universal approximation result for the minimum fuzzy implication rule as well as a differentiable substitute function that allows fast optimization and function approximation with neuro-fuzzy networks. --Fuzzy Logic,Neural Networks,Nonlinear Modeling,Optimization

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd

    Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process

    Get PDF
    Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model
    corecore