249 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Land Cover/Land Use Mapping Using Soft Computing Techniques with Optimized Features

    Get PDF
    The chapter discusses soft computing techniques for solving complex computational tasks. It highlights some of the soft computing techniques like fuzzy logic, genetic algorithm, artificial neural network, and machine learning. The classification of the remotely sensed images is always a tedious task. So, here we explain how these soft computing techniques could be used for image classification. Image classification mainly concentrates on the feature’s extraction process. The features extracted in an efficient manner improve classification accuracy. Hence, the different kinds of features and different methods for these extractions are explained. The best extracted features are selected using genetic algorithm. Various algorithms are shown and comparisons are made. Finally, the results are verified using a hypothetical case study

    An Adaptive Neuro Fuzzy Interference System for Feature Extraction of Hyperspectral Image

    Get PDF
    In this paper, a novel feature extraction method based on proposed for hyperspectral image classification. Hyperspectral images contain a large amount of data. Techniques are presented in this paper for visualizing important features contained in a hyperspectral data set. The major cause is that the size of training data set does not correspond to the increase of dimensionality of hyperspectral data. Actually, the problem of the “Finding minerals in hyper spectral images is too tough” emerges when a statistic-based classification method is applied to the hyperspectral data.  It was discovered that the resulting image is heavily influenced by the choice of focus bands used for display. When averaging hyper spectral signatures, choosing the correct pixels makes a difference, and desirable results are not always obtained. It was discovered that a procedure for visualizing hyper spectral image data that uses the peaks of the spectral signatures of pixels of interest provides a promising method for visualization.  Using wavelet coefficients and data from the hyperspectral bands produces noticeably different results, which suggests that wavelet analysis could provide a superior means for visualization in some instances when using bands does not provide acceptable results. The proposed Anfis (Adaptive neuro fuzzy interference system) method proves exceptional performance in terms of classification accuracy and computational efficiency

    An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data

    Full text link
    © 2018 Landslides are natural disasters that cause environmental and infrastructure damage worldwide. They are difficult to be recognized, particularly in densely vegetated regions of the tropical forest areas. Consequently, an accurate inventory map is required to analyze landslides susceptibility, hazard, and risk. Several studies were done to differentiate between different types of landslide (i.e. shallow and deep-seated); however, none of them utilized any feature selection techniques. Thus, in this study, three feature selection techniques were used (i.e. correlation-based feature selection (CFS), random forest (RF), and ant colony optimization (ACO)). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Random forest (RF) was used to evaluate the performance of each feature selection algorithms. The overall accuracies of the RF classifier revealed that CFS algorithm exhibited higher ranks in differentiation landslide types. Moreover, the results of the transferability showed that this method is easy, accurate, and highly suitable for differentiating between types of landslides (shallow and deep-seated). In summary, the study recommends that the outlined approaches are significant to improve in distinguishing between shallow and deep-seated landslide in the tropical areas, such as; Malaysia

    Estimating the concentration of physico chemical parameters in hydroelectric power plant reservoir

    Get PDF
    The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines the amazon region and adjacent areas, such as the Pantanal, as world heritage territories, since they possess unique flora and fauna and great biodiversity. Unfortunately, these regions have increasingly been suffering from anthropogenic impacts. One of the main anthropogenic impacts in the last decades has been the construction of hydroelectric power plants. As a result, dramatic altering of these ecosystems has been observed, including changes in water levels, decreased oxygenation and loss of downstream organic matter, with consequent intense land use and population influxes after the filling and operation of these reservoirs. This, in turn, leads to extreme loss of biodiversity in these areas, due to the large-scale deforestation. The fishing industry in place before construction of dams and reservoirs, for example, has become much more intense, attracting large populations in search of work, employment and income. Environmental monitoring is fundamental for reservoir management, and several studies around the world have been performed in order to evaluate the water quality of these ecosystems. The Brazilian Amazon, in particular, goes through well defined annual hydrological cycles, which are very importante since their study aids in monitoring anthropogenic environmental impacts and can lead to policy and decision making with regard to environmental management of this area. The water quality of amazon reservoirs is greatly influenced by this defined hydrological cycle, which, in turn, causes variations of microbiological, physical and chemical characteristics. Eutrophication, one of the main processes leading to water deterioration in lentic environments, is mostly caused by anthropogenic activities, such as the releases of industrial and domestic effluents into water bodies. Physico-chemical water parameters typically related to eutrophication are, among others, chlorophyll-a levels, transparency and total suspended solids, which can, thus, be used to assess the eutrophic state of water bodies. Usually, these parameters must be investigated by going out to the field and manually measuring water transparency with the use of a Secchi disk, and taking water samples to the laboratory in order to obtain chlorophyll-a and total suspended solid concentrations. These processes are time- consuming and require trained personnel. However, we have proposed other techniques to environmental monitoring studies which do not require fieldwork, such as remote sensing and computational intelligence. Simulations in different reservoirs were performed to determine a relationship between these physico-chemical parameters and the spectral response. Based on the in situ measurements, empirical models were established to relate the reflectance of the reservoir measured by the satellites. The images were calibrated and corrected atmospherically. Statistical analysis using error estimation was used to evaluate the most accurate methodology. The Neural Networks were trained by hydrological cycle, and were useful to estimate the physicalchemical parameters of the water from the reflectance of visible bands and NIR of satellite images, with better results for the period with few clouds in the regions analyzed. The present study shows the application of wavelet neural network to estimate water quality parameters using concentration of the water samples collected in the Amazon reservoir and Cefni reservoir, UK. Sattelite imagens from Landsats and Sentinel-2 were used to train the ANN by hydrological cycle. The trained ANNs demonstrated good results between observed and estimated after Atmospheric corrections in satellites images. The ANNs showed in the results are useful to estimate these concentrations using remote sensing and wavelet transform for image processing. Therefore, the techniques proposed and applied in the present study are noteworthy since they can aid in evaluating important physico-chemical parameters, which, in turn, allows for identification of possible anthropogenic impacts, being relevant in environmental management and policy decision-making processes. The tests results showed that the predicted values have good accurate. Improving efficiency to monitor water quality parameters and confirm the reliability and accuracy of the approaches proposed for monitoring water reservoirs. This thesis contributes to the evaluation of the accuracy of different methods in the estimation of physical-chemical parameters, from satellite images and artificial neural networks. For future work, the accuracy of the results can be improved by adding more satellite images and testing new neural networks with applications in new water reservoirs

    Using pixel-based and object-based methods to classify urban hyperspectral features

    Get PDF
    Object-based image analysis methods have been developed recently. They have since become a very active research topic in the remote sensing community. This is mainly because the researchers have begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral content of data. To evaluate the applicability of object-based image analysis methods for land-cover information extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, six supervised classification methods were selected from pixel-based category, including the maximum likelihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extraction methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. The effective feature number (EFN) was then obtained. Image objects were thereafter created using the fractal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several experiments have been carried out to find the best segmentation parameters. The classification accuracy of these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an urban area in Italy. The results reveal that when using any combination of feature extraction and classification methods, the performance of object-based methods was better than pixel-based ones. Furthermore the statistical analysis of results shows that on average, there is almost an 8 percent improvement in classification accuracy when we use the object-based methods
    • …
    corecore