155 research outputs found

    Discrete-time Optimal Adaptive RBFNN Control for Robot Manipulators with Uncertain Dynamics

    Get PDF
    In this paper, a novel optimal adaptive radial basis function neural network (RBFNN) control has been investigated for a class of multiple-input-multiple-output (MIMO) nonlinear robot manipulators with uncertain dynamics in discrete time. To facilitate digital implementations of the robot controller, a robot model in discrete time has been employed. A high order uncertain robot model is able to be transformed to a predictor form, and a feedback control system has been then developed without noncausal problem in discrete time. The controller has been designed by an adaptive neural network (NN) based on the feedback system. The adaptive RBFNN robot control system has been investigated by a critic RBFNN and an actor RBFNN to approximate a desired control and a strategic utility function, respectively. The rigorous Lyapunov analysis is used to establish uniformly ultimate boundedness (UUB) of closed-loop signals, and the high-quality dynamic performance against uncertainties and disturbances is obtained by appropriately selecting the controller parameters. Simulation studies validate that the proposed control scheme has performed better than other available methods currently, for robot manipulators

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    • …
    corecore