819 research outputs found

    Navigation Control of an Automated Guided Underwater Robot using Neural Network Technique

    Get PDF
    In recent years, under water robots play an important role in various under water operations. There is an increase in research in this area because of the application of autonomous underwater robots in several issues like exploring under water environment and resource, doing scientific and military tasks under water. We need good maneuvering capabilities and a well precision for moving in a specified track in these applications. However, control of these under water bots become very difficult due to the highly non-linear and dynamic characteristics of the underwater world. The logical answer to this problem is the application of non-linear controllers. As neural networks (NNs) are characterized by flexibility and an aptitude for dealing with non-linear problems, they are envisaged to be beneficial when used on underwater robots. In this research our artificial intelligence system is based on neural network model for navigation of an Automated Underwater robot in unpredictable and imprecise environment. Thus the back propagation algorithm has been used for the steering analysis of the underwater robot when it is encountered by a left, right and front as well as top obstacle. After training the neural network the neural network pattern was used in the controller of the underwater robot. The simulation of underwater robot under various obstacle conditions are shown using MATLAB

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Tracking control of a marine surface vessel with full-state constraints

    Get PDF

    Event sampled optimal adaptive regulation of linear and a class of nonlinear systems

    Get PDF
    In networked control systems (NCS), wherein a communication network is used to close the feedback loop, the transmission of feedback signals and execution of the controller is currently carried out at periodic sampling instants. Thus, this scheme requires a significant computational power and network bandwidth. In contrast, the event-based aperiodic sampling and control, which is introduced recently, appears to relieve the computational burden and high network resource utilization. Therefore, in this dissertation, a suite of novel event sampled adaptive regulation schemes in both discrete and continuous time domain for uncertain linear and nonlinear systems are designed. Event sampled Q-learning and adaptive/neuro dynamic programming (ADP) schemes without value and policy iterations are utilized for the linear and nonlinear systems, respectively, in both the time domains. Neural networks (NN) are employed as approximators for nonlinear systems and, hence, the universal approximation property of NN in the event-sampled framework is introduced. The tuning of the parameters and the NN weights are carried out in an aperiodic manner at the event sampled instants leading to a further saving in computation when compared to traditional NN based control. The adaptive regulator when applied on a linear NCS with time-varying network delays and packet losses shows a 30% and 56% reduction in computation and network bandwidth usage, respectively. In case of nonlinear NCS with event sampled ADP based regulator, a reduction of 27% and 66% is observed when compared to periodic sampled schemes. The sampling and transmission instants are determined through adaptive event sampling conditions derived using Lyapunov technique by viewing the closed-loop event sampled linear and nonlinear systems as switched and/or impulsive dynamical systems. --Abstract, page iii

    Adaptive fuzzy control for a marine vessel with time-varying constraints

    Get PDF

    Admittance-based adaptive cooperative control for multiple manipulators with output constraints

    Get PDF
    This paper proposes a novel adaptive control methodology based on the admittance model for multiple manipulators transporting a rigid object cooperatively along a predefined desired trajectory. First, an admittance model is creatively applied to generate reference trajectory online for each manipulator according to the desired path of the rigid object, which is the reference input of the controller. Then, an innovative integral barrier Lyapunov function is utilized to tackle the constraints due to the physical and environmental limits. Adaptive neural networks (NNs) are also employed to approximate the uncertainties of the manipulator dynamics. Different from the conventional NN approximation method, which is usually semiglobally uniformly ultimately bounded, a switching function is presented to guarantee the global stability of the closed loop. Finally, the simulation studies are conducted on planar two-link robot manipulators to validate the efficacy of the proposed approach

    Addressing Imperfect Symmetry: a Novel Symmetry-Learning Actor-Critic Extension

    Full text link
    Symmetry, a fundamental concept to understand our environment, often oversimplifies reality from a mathematical perspective. Humans are a prime example, deviating from perfect symmetry in terms of appearance and cognitive biases (e.g. having a dominant hand). Nevertheless, our brain can easily overcome these imperfections and efficiently adapt to symmetrical tasks. The driving motivation behind this work lies in capturing this ability through reinforcement learning. To this end, we introduce Adaptive Symmetry Learning (ASL) \unicode{x2013} a model-minimization actor-critic extension that addresses incomplete or inexact symmetry descriptions by adapting itself during the learning process. ASL consists of a symmetry fitting component and a modular loss function that enforces a common symmetric relation across all states while adapting to the learned policy. The performance of ASL is compared to existing symmetry-enhanced methods in a case study involving a four-legged ant model for multidirectional locomotion tasks. The results demonstrate that ASL is capable of recovering from large perturbations and generalizing knowledge to hidden symmetric states. It achieves comparable or better performance than alternative methods in most scenarios, making it a valuable approach for leveraging model symmetry while compensating for inherent perturbations
    corecore