580 research outputs found

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point

    Enhanced Temperature Control Method Using ANFIS with FPGA

    Get PDF
    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher

    Unsupervised Feature Extraction Techniques for Plasma Semiconductor Etch Processes

    Get PDF
    As feature sizes on semiconductor chips continue to shrink plasma etching is becoming a more and more critical process in achieving low cost high-volume manufacturing. Due to the highly complex physics of plasma and chemical reactions between plasma species, control of plasma etch processes is one of the most di±cult challenges facing the integrated circuit industry. This is largely due to the di±culty with monitoring plasmas. Optical Emission Spectroscopy (OES) technology can be used to produce rich plasma chemical information in real time and is increasingly being considered in semiconductor manufacturing for process monitoring and control of plasma etch processes. However, OES data is complex and inherently highly redundant, necessitating the development of advanced algorithms for e®ective feature extraction. In this thesis, three new unsupervised feature extraction algorithms have been proposed for OES data analysis and the algorithm properties have been explored with the aid of both arti¯cial and industrial benchmark data sets. The ¯rst algorithm, AWSPCA (AdaptiveWeighting Sparse Principal Component Analysis), is developed for dimension reduction with respect to variations in the analysed variables. The algorithm gener- ates sparse principle components while retaining orthogonality and grouping correlated variables together. The second algorithm, MSC (Max Separation Clustering), is devel- oped for clustering variables with distinctive patterns and providing e®ective pattern representation by a small number of representative variables. The third algorithm, SLHC (Single Linkage Hierarchical Clustering), is developed to achieve a complete and detailed visualisation of the correlation between variables and across clusters in an OES data set. The developed algorithms open up opportunities for using OES data for accurate pro- cess control applications. For example, MSC enables the selection of relevant OES variables for better modeling and control of plasma etching processes. SLHC makes it possible to understand and interpret patterns in OES spectra and how they relate to the plasma chemistry. This in turns can help engineers to achieve an in-depth under- standing of underlying plasma processes

    Multivariable OES data analysis for semiconductor plasma etching process

    Get PDF
    The semiconductor industry has played a crucial role in societal development over the past several decades. Plasma etching is a key processing step employed in Integrated Circuit (IC) fabrication. In order to improve product yield, Optical Emission Spectroscopy (OES) is widely used to monitor the etching process. OES generates high-dimensional data, which has a large information capacity but also has significant information redundancy. Based on plasma OES characteristics, two novel data analysis methods are proposed in this thesis: the Internal Information Redundancy Reduction (IIRR) method for dimension and redundancy reduction and Similarity Ratio Analysis (SRA) for fault detection. By identifying peak wavelength emissions and the correlative relationships between them, IIRR outputs a subset of the original variables. Data dimensionality is reduced significantly by IIRR with minimal information loss. The SRA method is intended for early-stage faultdetection in plasma etching processes using real-time OES data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process, so less energy and materials will be wasted by faulty processing. Generally, previous research on OES measurements of plasma etching has largely focused on particular target applications and has used methods that rely on transforming the original data into an abstract variable space. In contrast, our approach operates directly in the original variable space allowing a more direct and easier interpretation of the dimension reduced data

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Predictive Modeling for Intelligent Maintenance in Complex Semiconductor Manufacturing Processes.

    Full text link
    Semiconductor fabrication is one of the most complicated manufacturing processes, in which the current prevailing maintenance practices are preventive maintenance, using either time-based or wafer-based scheduling strategies, which may lead to the tools being either “over-maintained” or “under-maintained”. In literature, there rarely exists condition-based maintenance, which utilizes machine conditions to schedule maintenance, and almost no truly predictive maintenance that assesses remaining useful lives of machines and plans maintenance actions proactively. The research presented in this thesis is aimed at developing predictive modeling methods for intelligent maintenance in semiconductor manufacturing processes, using the in-process tool performance as well as the product quality information. In order to achieve an improved maintenance decision-making, a method for integrating data from different domains to predict process yield is proposed. The self-organizing maps have been utilized to discretize continuous data into discrete values, which will tremendously reduce the computational cost of Bayesian network learning process that can discover the stochastic dependences among process parameters and product quality. This method enables one to make more proactive product quality prediction that is different from traditional methods based on solely inspection results. Furthermore, a method of using observable process information to estimate stratified tool degradation levels has been proposed. Single hidden Markov model (HMM) has been employed to represent the tool degradation process under a single recipe; and the concatenation of multiple HMMs can be used to model the tool degradation under multiple recipes. To validate the proposed method, a simulation study has been conducted, which shows that HMMs are able to model the stratified unobservable degradation process under variable operating conditions. This method enables one to estimate the condition of in-chamber particle contamination so that maintenance actions can be initiated accordingly. With these two novel methods, a methodological framework to perform better maintenance in complex manufacturing processes is established. The simulation study shows that the maintenance cost can be reduced by performing predictive maintenance properly while highest possible yield is retained. This framework provides a possibility of using abundant equipment monitoring data and product quality information to coordinate maintenance actions in a complex manufacturing environment.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58530/1/yangliu_1.pd
    corecore