920 research outputs found

    Ultraprecise Controller for Piezoelectric Actuators Based on Deep Learning and Model Predictive Control

    Get PDF
    Piezoelectric actuators (PEA) are high-precision devices used in applications requiring micrometric displacements. However, PEAs present non-linearity phenomena that introduce drawbacks at high precision applications. One of these phenomena is hysteresis, which considerably reduces their performance. The introduction of appropriate control strategies may improve the accuracy of the PEAs. This paper presents a high precision control scheme to be used at PEAs based on the model-based predictive control (MPC) scheme. In this work, the model used to feed the MPC controller has been achieved by means of artificial neural networks (ANN). This approach simplifies the obtaining of the model, since the achievement of a precise mathematical model that reproduces the dynamics of the PEA is a complex task. The presented approach has been embedded over the dSPACE control platform and has been tested over a commercial PEA, supplied by Thorlabs, conducting experiments to demonstrate improvements of the MPC. In addition, the results of the MPC controller have been compared with a proportional-integral-derivative (PID) controller. The experimental results show that the MPC control strategy achieves higher accuracy at high precision PEA applications such as tracking periodic reference signals and sudden reference change

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks

    Get PDF
    Piezoelectric actuators (PEA) are frequently employed in applications where nano-Micr-odisplacement is required because of their high-precision performance. However, the positioning is affected substantially by the hysteresis which resembles in an nonlinear effect. In addition, hysteresis mathematical models own deficiencies that can influence on the reference following performance. The objective of this study was to enhance the tracking accuracy of a commercial PEA stack actuator with the implementation of a novel approach which consists in the use of a Super-Twisting Algorithm (STA) combined with artificial neural networks (ANN). A Lyapunov stability proof is bestowed to explain the theoretical solution. Experimental results of the proposed method were compared with a proportional-integral-derivative (PID) controller. The outcomes in a real PEA reported that the novel structure is stable as it was proved theoretically, and the experiments provided a significant error reduction in contrast with the PID.This research was funded by Basque Government and UPV/EHU projects

    Dispersed operating time control of a mechanical switch actuated by an ultrasonic motor

    Get PDF
    The ultrasonic motor is an uncertain time-varying nonlinear system because of the nonlinearity of the piezoelectric material, the friction and the temperature. For example, the operating time of the mechanical switch actuated by the ultrasonic motor in regular stroke is highly dispersed. Unfortunately, it is difficult to establish accurate mathematical model. In this paper, an analytical autoregressive process model (AR) is employed to identify and control the ultrasonic motor. First of all, dispersed operating time of the mechanical switch actuated by the ultrasonic motor is investigated. Then, the AR model is established to predict the operating time of the ultrasonic motor on the basis of the statistical data to reduce the nonlinear behavior of the ultrasonic motor, and to improve the accuracy and obtain a good time response of the switch. The simulation results are agreed with experimental results, confirming the effectiveness of proposed model. Furthermore, we adopt the predicted result of the AR model to control the mechanical switch actuated by the ultrasonic motor. The analytical investigation is fulfilled with two target operating time ranges, namely 12 ms and 24 ms. Comparison of the results obtained from the AR model and the experimentation reveal that the standard deviations are less than 95.3 μs and 102.7 μs with maximum errors equal to 0.41 % and 0.44 % respectively. Thereby, the proposed dispersed operating time control is performed. Findings indicate that the maximum errors for the operating time of the mechanical switch are less than 140 μs and 110 μs with ±0.85 % and ±0.42 % respectively

    Design and experimental validation of a piezoelectric actuator tracking control based on fuzzy logic and neural compensation

    Get PDF
    This work proposes two control feedback-feedforward algorithms, based on fuzzy logic in combination with neural networks, aimed at reducing the tracking error and improving the actuation signal of piezoelectric actuators. These are frequently used devices in a wide range of applications due to their high precision in micro- and nanopositioning combined with their mechanical stiffness. Nevertheless, the hysteresis is one the main phenomenon that degrades the performance of these actuators in tracking operations. The proposed control schemes were tested experimentally in a commercial piezoelectric actuator. They were implemented with a dSPACE 1104 device, which was used for signal generation and acquisition purposes. The performance of the proposed control schemes was compared to conventional structures based on proportional-integral-derivative and fuzzy logic in feedback configuration. Experimental results show the advantages of the proposed controllers, since they are capable of reducing the error to significant magnitude orders.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputación Foral de Álava (DFA), through the project CONAVANTER, and to the UPV/EHU, through the project GIU20/063, for supporting this work

    Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation

    Get PDF
    This paper presents an improved control approach to be used for piezoelectric actuators. The proposed approach is based on sliding mode control with estimation perturbation (SMCPE) techniques. Also, a proportional-integral-derivative (PID)-type sliding surface is proposed for position tracking. The proposed approach has been studied and implemented in a commercial actuator. A model for the system is introduced, which includes the Bouc-Wen (BW) model to represent the hysteresis, and it is identified by means of the System Identification Toolbox in Matlab/Simulink. Experimental data show that the proposed controller has a better performance when compared to a proportional-integral (PI) controller or a conventional SMCPE in motion tracking. Furthermore, a sub-micrometer accuracy tracking can be obtained while compensating for the hysteresis effect.This research was partially funded by the Basque Government through the project ETORTEK KK-2017/00033, and by the UPV/EHU through the projects PPGA18/04 and UFI 11/07
    corecore