6,922 research outputs found

    The State of the Art of Automatic Programming

    Get PDF
    Automaatprogrammeerimine või koodi genereerimine on teatud tüüpi arvutiprogrammide loomisviis, kus kood genereeritakse mõne tööriista abil, mis võimaldab arendajatel koodi kirjutada kõrgemal abstraktsioonitasemel. Selliste programmide rakendamine tarkvaraarenduse protsessis on hea viis programmeerijate produktiivsuse tõstmiseks, võimaldades neil keskenduda pigem käesolevale ülesandele kui implementatsiooni detailidele. Senises teaduskirjanduses on vaadeldud konkreetseid lähenemisi või meetodeid eraldi. Väga vähesed uurimustööd vaatlevad aga kogu valdkonna viimast taset. Käesolevas töös käsitletakse automaatprogrammeerimist olemasoleva kirjanduse süstemaatilise kirjandusülevaate meetodi abil. Töö teeb ülevaate teemaga seonduvatest algoritmidest, probleemidest ning uurmisvaldkonna avatud uurimisküsimustest ning võrdleb valdkonna hetketaset praktika hetketasemega. Vaaldeldud 37 asjakohasest uuringust tegelesid 19 automaatprogrammeerimise üldise määratlemise ja alateemadega. Kolmkümmend uuringut pakkusid välja konkreetse algoritmi või lähenemisviisi. Esitatud tehnikatest rakendati 2 praktikas. Viimasel ajal on automaatprogrammerimise fookus nihkunud programmide sünteesilt induktiivsele programmeerimisele, mille on põhjustanud läbimurded tehisintellekti valdkonnas. Mõistete ja alateemade määratlus on teadlaste vahel ühtne. Õigete spetsifikatsioonide sõnastamine ja piisava teabe andmine automatiseerimiseks on endiselt lahtine uurimisküsimus.Automatic programming or code generation is a type of computer programming where the code is generated using some tools allowing developers to write code at the higher level of abstraction. Implementing these types of programs into the software development process is a good way to boost programmers’ performance by focusing on the task at hand rather than implementation details. Current literature on the subject reviews single approach or method. Very few of them are reviewing state of the art in general. This paper reviews the state of the art of automatic programming by overviewing the existing literature on the topic using systematic literature review method. The paper overviews approaches and algorithms of the topic, examines issues and open questions in the field and compares the state of the art to the state of the practice. Of 37 relevant studies, 19 addressed general definitions and subtopics of automatic programming. 30 presented specific algorithms or approaches. 2 of proposed techniques were implemented in practice. Currently, the focus of automatic programming shifted from program synthesis to inductive programming, caused by a breakthrough in artificial intelligence. Definition of the term and subtopics is consistent between scholars. However, formulating correct specification and providing sufficient information for automation is still an open research question

    AutoBayes: A System for Generating Data Analysis Programs from Statistical Models

    No full text
    Data analysis is an important scientific task which is required whenever information needs to be extracted from raw data. Statistical approaches to data analysis, which use methods from probability theory and numerical analysis, are well-founded but difficult to implement: the development of a statistical data analysis program for any given application is time-consuming and requires substantial knowledge and experience in several areas. In this paper, we describe AutoBayes, a program synthesis system for the generation of data analysis programs from statistical models. A statistical model specifies the properties for each problem variable (i.e., observation or parameter) and its dependencies in the form of a probability distribution. It is a fully declarative problem description, similar in spirit to a set of differential equations. From such a model, AutoBayes generates optimized and fully commented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Code is produced by a schema-guided deductive synthesis process. A schema consists of a code template and applicability constraints which are checked against the model during synthesis using theorem proving technology. AutoBayes augments schema-guided synthesis by symbolic-algebraic computation and can thus derive closed-form solutions for many problems. It is well-suited for tasks like estimating best-fitting model parameters for the given data. Here, we describe AutoBayes's system architecture, in particular the schema-guided synthesis kernel. Its capabilities are illustrated by a number of advanced textbook examples and benchmarks

    AP: Artificial Programming

    Get PDF
    The ability to automatically discover a program consistent with a given user intent (specification) is the holy grail of Computer Science. While significant progress has been made on the so-called problem of Program Synthesis, a number of challenges remain; particularly for the case of synthesizing richer and larger programs. This is in large part due to the difficulty of search over the space of programs. In this paper, we argue that the above-mentioned challenge can be tackled by learning synthesizers automatically from a large amount of training data. We present a first step in this direction by describing our novel synthesis approach based on two neural architectures for tackling the two key challenges of Learning to understand partial input-output specifications and Learning to search programs. The first neural architecture called the Spec Encoder computes a continuous representation of the specification, whereas the second neural architecture called the Program Generator incrementally constructs programs in a hypothesis space that is conditioned by the specification vector. The key idea of the approach is to train these architectures using a large set of (spec,P) pairs, where P denotes a program sampled from the DSL L and spec denotes the corresponding specification satisfied by P. We demonstrate the effectiveness of our approach on two preliminary instantiations. The first instantiation, called Neural FlashFill, corresponds to the domain of string manipulation programs similar to that of FlashFill. The second domain considers string transformation programs consisting of composition of API functions. We show that a neural system is able to perform quite well in learning a large majority of programs from few input-output examples. We believe this new approach will not only dramatically expand the applicability and effectiveness of Program Synthesis, but also would lead to the coming together of the Program Synthesis and Machine Learning research disciplines
    corecore