206 research outputs found

    An Integrated architecture for recognition of totally unconstrained handwritten numerals

    Get PDF
    Reprint. Reprinted from the International journal of pattern recognition and artificial intelligence. Vol. 7, no. 4 (1993) "January 1993."Includes bibliographical references (p. 127-128).Supported by the Productivity From Information Technology (PROFIT) Research Initiative at MIT.Amar Gupta ... [et al.

    Beyond writing: The development of literacy in the Ancient Near East

    Get PDF
    Previous discussions of the origins of writing in the Ancient Near East have not incorporated the neuroscience of literacy, which suggests that when southern Mesopotamians wrote marks on clay in the late-fourth millennium, they inadvertently reorganized their neural activity, a factor in manipulating the writing system to reflect language, yielding literacy through a combination of neurofunctional change and increased script fidelity to language. Such a development appears to take place only with a sufficient demand for writing and reading, such as that posed by a state-level bureaucracy; the use of a material with suitable characteristics; and the production of marks that are conventionalized, handwritten, simple, and non-numerical. From the perspective of Material Engagement Theory, writing and reading represent the interactivity of bodies, materiality, and brains: movements of hands, arms, and eyes; clay and the implements used to mark it and form characters; and vision, motor planning, object recognition, and language. Literacy is a cognitive change that emerges from and depends upon the nexus of interactivity of the components

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    Constructing a concept of number

    Get PDF
    Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics like linearity that may persist in the form of knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to and functionally independent of any particular form. Material devices used to represent and manipulate numbers also interact with language in ways that reinforce or contrast different aspects of numerical cognition. Not only does this interaction potentially explain some of the unique aspects of numerical language, it suggests that the two are complementary but ultimately distinct means of accessing numerical intuitions and insights. The potential inclusion of materiality in contemporary research in numerical cognition is advocated, both for its explanatory power, as well as its influence on psychological, behavioral, and linguistic aspects of numerical cognition

    Handwritten Digit Recognition and Classification Using Machine Learning

    Get PDF
    In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy
    • …
    corecore