1,054 research outputs found

    Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease

    Get PDF
    Recent research highlights the association of gait and cognition in older adults but a stronger understanding is needed to discern coincident pathophysiology, patterns of change, examine underlying mechanisms and aid diagnosis. This structured review mapped associations and predictors of gait and cognition in older adults with and without cognitive impairment, and Parkinson's disease. Fifty papers out of an initial yield of 22,128 were reviewed and a model of gait guided analysis and interpretation. Associations were dominated by the pace domain of gait; the most frequently studied domain. In older adults pace was identified as a predictor for cognitive decline. Where comprehensive measurement of gait was conducted, more specific pathological patterns of association were evident highlighting the importance of this approach. This review confirmed a robust association between gait and cognition and argues for a selective, comprehensive measurement approach. Results suggest gait may be a surrogate marker of cognitive impairment and cognitive decline. Understanding the specific nature of this relationship is essential for refinement of diagnostics and development of novel therapies

    The Spatial Evolution of Tau Pathology in Alzheimer’s Disease: Influence of Functional Connectivity and Education

    Get PDF
    Alzheimer’s disease is neuropathologically characterized by extracellular accumulation of amyloid beta plaques and intracellular aggregation of misfolded tau proteins, which eventually lead to neurodegeneration and cognitive impairment. With the recent advances in neuroimaging, these two proteinopathies can now be studied in vivo using positron emission tomography (PET). Combining this imaging technique with functional magnetic resonance imaging has consistently revealed a spatial overlap between amyloid beta accumulates and functional connectivity networks (Buckner et al., 2009; Grothe et al., 2016), indicating functional connectivity as mechanistic pathway in the distribution of neuropathologies. While the infiltration of these neuronal networks by amyloid beta deposits seems uniform across individuals with Alzheimer’s disease, there nevertheless exists inter-individual differences in the clinical expression of the disease despite similar pathological burden (Stern, 2012). This observation has fuelled the concept of existing resilience mechanisms, which are supported by lifetime and –style factors and, which magnitude varies between individuals, contributing to the clinical heterogeneity seen in Alzheimer’s disease. Even though the spreading and resilience mechanisms in the phase of amyloid beta accumulation are now better understood, no information on tau pathology in vivo were available in this regard until recently. Given the recent introduction of tau PET compounds, this thesis therefore aimed to address two questions: 1) whether functional connectivity contributes to the distribution of tau pathology across brain networks, and 2) whether the consequence of tau pathology on cognitive and neuronal function is mitigated by a resilience proxy, namely education. Using [18F]-AV-1451 PET imaging to quantify tau pathology in a group of Alzheimer’s disease patients, we observed that tau pathology arises synchronously in independent components of the brain, which in turn moderately overlap with known functional connectivity networks. This suggest that functional connectivity may act as contributing factor in the stereotypical distribution of tau pathology. Moreover, the results of this thesis demonstrate that the consequence of regional tau pathology on cognition differs depending on the level of education. Despite equal clinical presentation, higher educated patients can tolerate more tau pathology, already in regions related to advanced disease stage, than lower educated patients. Furthermore, tau pathology is less paralleled by neuronal dysfunction at higher levels of education. Thus, higher educated individuals show a relative preservation of neuronal function despite the aggregation of misfolded tau proteins. This maintenance of neuronal function may in turn explain the relative preservation of cognitive function albeit progressive tau pathology aggregation. Taken together, the results of this thesis provide novel insights into the spreading mechanisms and the role of resilience factors towards tau pathology aggregation, which may not only be relevant for Alzheimer’s disease, but other neurodegenerative diseases, in particular,tauopathies. Better understanding of the spreading mechanisms in these diseases will permit a more precise prediction of disease progression and will thus be valuable for disease monitoring. Concomitantly, the development of sensitive biomarkers for disease monitoring is crucial for the evaluation of anti-tau-based therapies. Regarding the development of pharmacological strategies, the current results also indicate that proxy measures of resilience, such as education, need to be considered when allocating patients to treatment groups. Biased allocation may otherwise lead to a misinterpretation of observed effects that are not due to the drug but the group characteristics. Aside from this, sensitive tools for the early identification of at-risk individuals with high resilience need to be established to allow for a timely intervention. Current hypothesis is that an early intervention has the highest chance of success in modifying the disease course. However, as demonstrated by this work, individuals with high resilience remain undiagnosed until late in the disease course. Further research into resilience mechanisms may thus support the development of sensitive diagnostic tools and additionally offer potential targets that can be harnessed for novel treatment strategies. Hopefully, one day supporting the development of effective disease-modifying treatments

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    A multimodal approach to the study of self and others’ awareness in prodromal to mild Alzheimer’s disease

    Get PDF
    Patients in the early stage of Alzheimer’s disease (AD) can manifest disorders of cognitive awareness such as a lack of/limited self-awareness of their own cognitive deficits (anosognosia) or as a reduction in the ability to be aware of others, i.e., social cognition; more specifically in the ability to recognise emotions or attribute mental states to others (also known as Theory of Mind, ToM). The present thesis intended to explain the behavioural, brain neuroanatomical, structural connectivity and resting-state functional relationship between the presence of multi-domain alterations of self-awareness/anosognosia and others awareness/social cognition to understand the cognitive and neural substrates that shape conscious awareness in early AD. Behavioural findings evidenced an association between the presence of anosognosia and reduced ToM. Individually, memory anosognosia was associated with memory proxies and total anosognosia with visuospatial abilities, while social cognition was associated with language, memory, attention and most importantly, executive functions. Neuroanatomical structural findings of non-memory and total anosognosia showed reduced grey matter volume in the anterior cingulate cortex (ACC), fusiform, lingual and precentral gyri. Conversely, ToM showed reduced grey matter volume also in the ACC, but reduction extended to encompass temporoparietal junction, orbitofrontal, superior temporal and cerebellar cortices. The ACC showed a statistical shared neural overlap between self-other awareness. At the functional level, both anosognosia and social cognition were associated with reduced internetwork connectivity between the default mode network (DMN) and the executive frontoparietal network (FPN), as well as higher connectivity between the DMN and the salience network, in which the insula seems to have an essential role. Subcortical contributions to large-scale network connectivity were also found. We propose that medial frontal executive mechanisms, such as those subserved by the ACC, might support awareness in the presence of an inherently damaged DMN in early-AD. Functional adaptive reorganisation of network dynamics might increase the strain to salient system hubs (ACC) by redirecting network traffic of executive resources to cope with the progressive decline of conscious awareness

    Affective and emotional dysregulation as pre-dementia risk markers: exploring the mild behavioral impairment symptoms of depression, anxiety, irritability, and euphoria

    Get PDF
    Background: Affective and emotional symptoms such as depression, anxiety, euphoria, and irritability are common neuropsychiatric symptoms (NPS) in pre-dementia and cognitively normal older adults. They comprise a domain of Mild Behavioral Impairment (MBI), which describes their emergence in later life as an at-risk state for cognitive decline and dementia, and as a potential manifestation of prodromal dementia. This selective scoping review explores the epidemiology and neurobiological links between affective and emotional symptoms, and incident cognitive decline, focusing on recent literature in this expanding field of research. Methods: Existing literature in prodromal and dementia states was reviewed, focusing on epidemiology, and neurobiology. Search terms included: “mild cognitive impairment,” “dementia,” “prodromal dementia,” “preclinical dementia,” “Alzheimer's,” “depression,” “dysphoria,” “mania,” “euphoria,” “bipolar disorder,” and “irritability.” Results: Affective and emotional dysregulation are common in preclinical and prodromal dementia syndromes, often being harbingers of neurodegenerative change and progressive cognitive decline. Nosological constraints in distinguishing between pre-existing psychiatric symptomatology and later life acquired NPS limit historical data utility, but emerging research emphasizes the importance of addressing time frames between symptom onset and cognitive decline, and age of symptom onset. Conclusion: Affective symptoms are of prognostic utility, but interventions to prevent dementia syndromes are limited. Trials need to assess interventions targeting known dementia pathology, toward novel pathology, as well as using psychiatric medications. Research focusing explicitly on later life onset symptomatology will improve our understanding of the neurobiology of NPS and neurodegeneration, enrich the study sample, and inform observational and clinical trial design for prevention and treatment strategies

    Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation : A critical review

    Get PDF
    Music has the capacity to engage auditory, cognitive, motor, and emotional functions across cortical and subcortical brain regions and is relatively preserved in aging and dementia. Thus, music is a promising tool in the rehabilitation of aging-related neurological illnesses, such as stroke and Alzheimer disease. As the population ages and the incidence and prevalence of these illnesses rapidly increases, music-based interventions that are enjoyable and effective in the everyday care of the patients are needed. In addition to formal music therapy, musical leisure activities, such as music listening and singing, which patients can do on their own or with a caregiver, are a promising way to support psychological well-being during aging and in neurological rehabilitation. This review article provides an overview of current evidence on the cognitive, emotional, and neural effects of musical leisure activities both during normal aging and in the rehabilitation and care of stroke patients and people with dementia. (C) 2017 Elsevier Masson SAS. All rights reserved.Peer reviewe

    The role of limbic structures in financial abilities of mild cognitive impairment patients

    Get PDF
    Mild Cognitive Impairment (MCI) patients experience problems in financial abilities that affect everyday functioning. To date, the neural correlates of decline in this domain are unclear. This study aims at examining the correlation between the pattern of brain atrophy of MCI patients and performance on financial abilities. Forty-four MCI patients and thirty-seven healthy controls underwent structural magnetic resonance imaging, and assessment of financial abilitiesby means of the Numerical Activities of Daily Living Financial battery (NADL-F). As compared to healthy controls, MCI patients showed impaired performance in three out of the seven domains assessed by NADL-F: Item purchase, percentage, and financial concepts. The patients\u2019 performance in the NADL-F correlated with memory, language, visuo-spatial, and abstract reasoning composite scores. The analysis also revealed that volumetric differences in the limbic structures significantly correlated with financial abilities in MCI. Specifically, the patients\u2019 performance in the NADL-F was correlated with atrophy in the left medial and lateral amygdala and the right anterior thalamic radiation. These findings suggest that completing daily financial tasks involves sub-cortical regions in MCI and presumably also the motivational and emotional processes associated to them. Involvement of altered limbic structures in MCI patients suggests that impairment in financial abilities may be related to emotional and reflexive processing deficits

    Topological Biomarker of Alzheimer’s Disease

    Get PDF
    For years, it has been assumed that the cerebral accumulation of pathologic protein forms is the main trigger of Alzheimer’s disease (AD) pathology; however, recent studies revealed strong evidences that the alternations in synaptic activity precede and affect the homeostasis of amyloid-beta and tau, both of which aggregate during AD. Given that the neuropathological changes, characteristic for AD, start decades before the onset of the first symptoms, when alternations become irreversible, it is crucial to find a biomarker that can detect the preclinical signs of disease, presumably synaptic dysfunction of specific cerebral areas. Here is presented a novel, a high potential neuroimaging biomarker that can detect the postsynaptic dysfunction of specific neural substrate located in medial prefrontal cortex (mPFC) during sensory gating processing of a simple auditory stimulus. The magnetoencephalography-based localization of mPFC gating activation has the potential not only to detect symptomatic AD but also to become a predictor of cognitive decline related to the pathophysiological processes of AD, both at the individual level. The strengths of proposed biomarker lie in the simplicity of using a binary value, i.e., activated or not activated a neural generator along with its potential to follow the evolution of the pathophysiological process of disease from preclinical phase. The novel biomarker does not require estimation of uniform cutoff levels and standardization processes, the main problems of so far proposed biomarkers. Ability to individually detect AD pathology during putative preclinical and clinical stages, absolute noninvasiveness, and large effect size give this biomarker a high translation capacity and clinical potential
    • …
    corecore