70,468 research outputs found

    QRnet: optimal regulator design with LQR-augmented neural networks

    Get PDF
    In this paper we propose a new computational method for designing optimal regulators for high-dimensional nonlinear systems. The proposed approach leverages physics-informed machine learning to solve high-dimensional Hamilton-Jacobi-Bellman equations arising in optimal feedback control. Concretely, we augment linear quadratic regulators with neural networks to handle nonlinearities. We train the augmented models on data generated without discretizing the state space, enabling application to high-dimensional problems. We use the proposed method to design a candidate optimal regulator for an unstable Burgers' equation, and through this example, demonstrate improved robustness and accuracy compared to existing neural network formulations.Comment: Added IEEE accepted manuscript with copyright notic

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    Harmonic balance surrogate-based immunity modeling of a nonlinear analog circuit

    Get PDF
    A novel harmonic balance surrogate-based technique to create fast and accurate behavioral models predicting, in the early design stage, the performance of nonlinear analog devices during immunity tests is presented. The obtained immunity model hides the real netlist, reduces the simulation time, and avoids expensive and time-consuming measurements after tape-out, while still providing high accuracy. The model can easily be integrated into a circuit simulator together with additional subcircuits, e.g., board and package models, as such allowing to efficiently reproduce complete immunity test setups during the early design stage and without disclosing any intellectual property. The novel method is validated by means of application to an industrial case study, being an automotive voltage regulator, clearly showing the technique's capabilities and practical advantages

    Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Get PDF
    open4siSustainable control has begun to stimulate research and development in a wide range of industrial communities particularly for systems that demand a high degree of reliability and availability (sustainability) and at the same time characterised by expensive and/or safety critical maintenance work. For heating systems such as HVAC plants, clear conflict exists between ensuring a high degree of availability and reducing costly maintenance times. HVAC systems have highly non-linear dynamics and a stochastic and uncontrollable driving force as input in the form of intake air speed, presenting an interesting challenge for modern control methods. Suitable control methods can provide sustainable maximisation of energy conversion efficiency over wider than normally expected air speeds and temperatures, whilst also giving a degree of “tolerance” to certain faults, providing an important impact on maintenance scheduling, e.g. by capturing the effects of some system faults before they become serious.This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data driven and physically meaningful nonlinear continuous time model, which represents a test bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model based and data driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.openTurhan, T.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.Turhan, T.; Simani, Silvio; Zajic, I.; Gokcen Akkurt, G

    Efficient optimization of the integrity behavior of analog nonlinear devices using surrogate models

    Get PDF
    A novel technique to analyze and optimize the integrity behavior of nonlinear analog devices in the presence of noise is proposed. The technique leverages surrogate models, as such reducing the simulation time, avoiding time-consuming and expensive measurements after tape-out and hiding the original netlist of the circuit, while maintaining high accuracy. Easy integration of the surrogates into a circuit simulator together with pertinent subcircuits representing, e. g., board and package, allows mimicking the integrity behavior of a complete setup while still being in the design phase. In this contribution, the method is applied to a case study, being a voltage regulator designed for automotive applications
    corecore