721 research outputs found

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Opponent Modelling in Multi-Agent Systems

    Get PDF
    Reinforcement Learning (RL) formalises a problem where an intelligent agent needs to learn and achieve certain goals by maximising a long-term return in an environment. Multi-agent reinforcement learning (MARL) extends traditional RL to multiple agents. Many RL algorithms lose convergence guarantee in non-stationary environments due to the adaptive opponents. Partial observation caused by agents’ different private observations introduces high variance during the training which exacerbates the data inefficiency. In MARL, training an agent to perform well against a set of opponents often leads to bad performance against another set of opponents. Non-stationarity, partial observation and unclear learning objective are three critical problems in MARL which hinder agents’ learning and they all share a cause which is the lack of knowledge of the other agents. Therefore, in this thesis, we propose to solve these problems with opponent modelling methods. We tailor our solutions by combining opponent modelling with other techniques according to the characteristics of problems we face. Specifically, we first propose ROMMEO, an algorithm inspired by Bayesian inference, as a solution to alleviate the non-stationarity in cooperative games. Then we study the partial observation problem caused by agents’ private observation and design an implicit communication training method named PBL. Lastly, we investigate solutions to the non-stationarity and unclear learning objective problems in zero-sum games. We propose a solution named EPSOM which aims for finding safe exploitation strategies to play against non-stationary opponents. We verify our proposed methods by varied experiments and show they can achieve the desired performance. Limitations and future works are discussed in the last chapter of this thesis

    Application of Reinforcement Learning to Multi-Agent Production Scheduling

    Get PDF
    Reinforcement learning (RL) has received attention in recent years from agent-based researchers because it can be applied to problems where autonomous agents learn to select proper actions for achieving their goals based on interactions with their environment. Each time an agent performs an action, the environment¡Šs response, as indicated by its new state, is used by the agent to reward or penalize its action. The agent¡Šs goal is to maximize the total amount of reward it receives over the long run. Although there have been several successful examples demonstrating the usefulness of RL, its application to manufacturing systems has not been fully explored. The objective of this research is to develop a set of guidelines for applying the Q-learning algorithm to enable an individual agent to develop a decision making policy for use in agent-based production scheduling applications such as dispatching rule selection and job routing. For the dispatching rule selection problem, a single machine agent employs the Q-learning algorithm to develop a decision-making policy on selecting the appropriate dispatching rule from among three given dispatching rules. In the job routing problem, a simulated job shop system is used for examining the implementation of the Q-learning algorithm for use by job agents when making routing decisions in such an environment. Two factorial experiment designs for studying the settings used to apply Q-learning to the single machine dispatching rule selection problem and the job routing problem are carried out. This study not only investigates the main effects of this Q-learning application but also provides recommendations for factor settings and useful guidelines for future applications of Q-learning to agent-based production scheduling

    Distributed task allocation optimisation techniques in multi-agent systems

    Get PDF
    A multi-agent system consists of a number of agents, which may include software agents, robots, or even humans, in some application environment. Multi-robot systems are increasingly being employed to complete jobs and missions in various fields including search and rescue, space and underwater exploration, support in healthcare facilities, surveillance and target tracking, product manufacturing, pick-up and delivery, and logistics. Multi-agent task allocation is a complex problem compounded by various constraints such as deadlines, agent capabilities, and communication delays. In high-stake real-time environments, such as rescue missions, it is difficult to predict in advance what the requirements of the mission will be, what resources will be available, and how to optimally employ such resources. Yet, a fast response and speedy execution are critical to the outcome. This thesis proposes distributed optimisation techniques to tackle the following questions: how to maximise the number of assigned tasks in time restricted environments with limited resources; how to reach consensus on an execution plan across many agents, within a reasonable time-frame; and how to maintain robustness and optimality when factors change, e.g. the number of agents changes. Three novel approaches are proposed to address each of these questions. A novel algorithm is proposed to reassign tasks and free resources that allow the completion of more tasks. The introduction of a rank-based system for conflict resolution is shown to reduce the time for the agents to reach consensus while maintaining equal number of allocations. Finally, this thesis proposes an adaptive data-driven algorithm to learn optimal strategies from experience in different scenarios, and to enable individual agents to adapt their strategy during execution. A simulated rescue scenario is used to demonstrate the performance of the proposed methods compared with existing baseline methods

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p
    • …
    corecore