101,661 research outputs found

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Grass Root Algorithm Optimize Neural Networks for Classification Problem

    Get PDF
    Artificial neural networks are computational models that trying to emulate the structure and functions of biological human networks. They have been extensively used in many applications include science, business, engineering, and data mining. Learning of an artificial neural network means how to adapt the weights of the network interconnections using suitable adaption algorithm. The training algorithms that is used to modify the weights of the network are considered the most important portion that influences the artificial networks performance. In the past few decade, many meta-heuristic algorithms have been used to optimize networks synaptic weights, in order to achieve better performance. This paper proposes a general network training method based on population-based algorithms, proposes a novel meta-heuristic algorithm that is inspired by the general grass plants root system to optimize the weights of the proposed artificial network to classify real data four classes XOR and Iris data comparing the obtained results of the proposed algorithm with other familiar evolutionary meta-heuristic algorithms.

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Multi-task Deep Neural Networks in Automated Protein Function Prediction

    Full text link
    In recent years, deep learning algorithms have outperformed the state-of-the art methods in several areas thanks to the efficient methods for training and for preventing overfitting, advancement in computer hardware, the availability of vast amount data. The high performance of multi-task deep neural networks in drug discovery has attracted the attention to deep learning algorithms in bioinformatics area. Here, we proposed a hierarchical multi-task deep neural network architecture based on Gene Ontology (GO) terms as a solution to protein function prediction problem and investigated various aspects of the proposed architecture by performing several experiments. First, we showed that there is a positive correlation between performance of the system and the size of training datasets. Second, we investigated whether the level of GO terms on GO hierarchy related to their performance. We showed that there is no relation between the depth of GO terms on GO hierarchy and their performance. In addition, we included all annotations to the training of a set of GO terms to investigate whether including noisy data to the training datasets change the performance of the system. The results showed that including less reliable annotations in training of deep neural networks increased the performance of the low performed GO terms, significantly. We evaluated the performance of the system using hierarchical evaluation method. Mathews correlation coefficient was calculated as 0.75, 0.49 and 0.63 for molecular function, biological process and cellular component categories, respectively. We showed that deep learning algorithms have a great potential in protein function prediction area. We plan to further improve the DEEPred by including other types of annotations from various biological data sources. We plan to construct DEEPred as an open access online tool.Comment: 19 pages, 4 figures, 4 table

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    corecore