104,746 research outputs found

    Artificial Neural Networks in Production Scheduling and Yield Prediction of Semiconductor Wafer Fabrication System

    Get PDF
    With the development of artificial intelligence, the artificial neural networks (ANN) are widely used in the control, decision‐making and prediction of complex discrete event manufacturing systems. Wafer fabrication is one of the most complicated and high competence manufacturing phases. The production scheduling and yield prediction are two critical issues in the operation of semiconductor wafer fabrication system (SWFS). This chapter proposed two fuzzy neural networks for the production rescheduling strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐based rescheduling decision model is implemented, which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to the current system disturbances. The experimental results demonstrate the effectiveness of proposed FNN‐based rescheduling decision mechanism approach over the alternatives (back‐propagation neural network and Multivariate regression). Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to improve prediction accuracy of die yield in which the impact factors of yield and critical electrical test parameters are considered simultaneously and are taken as independent variables. The comparison experiment verifies the proposed yield prediction method improves on three traditional yield prediction methods with respect to prediction accuracy

    From Computational Fluid Dynamics to Structure Interpretation via Neural Networks: An Application to Flow and Transport in Porous Media

    Get PDF
    The modeling of flow and transport in porous media is of the utmost importance in many chemical engineering applications, including catalytic reactors, batteries, and CO2 storage. The aim of this study is to test the use of fully connected (FCNN) and convolutional neural networks (CNN) for the prediction of crucial properties in porous media systems: The permeability and the filtration rate. The data-driven models are trained on a dataset of computational fluid dynamics (CFD) simulations. To this end, the porous media geometries are created in silico by a discrete element method, and a rigorous setup of the CFD simulations is presented. The models trained have as input both geometrical and operating conditions features so that they could find application in multiscale modeling, optimization problems, and in-line control. The average error on the prediction of the permeability is lower than 2.5%, and that on the prediction of the filtration rate is lower than 5% in all the neural networks models. These results are achieved with at least a dataset of ~ 100 CFD simulations

    Adaptive Predictive Control Using Neural Network for a Class of Pure-feedback Systems in Discrete-time

    Get PDF
    10.1109/TNN.2008.2000446IEEE Transactions on Neural Networks1991599-1614ITNN

    A hybrid neuro--wavelet predictor for QoS control and stability

    Full text link
    For distributed systems to properly react to peaks of requests, their adaptation activities would benefit from the estimation of the amount of requests. This paper proposes a solution to produce a short-term forecast based on data characterising user behaviour of online services. We use \emph{wavelet analysis}, providing compression and denoising on the observed time series of the amount of past user requests; and a \emph{recurrent neural network} trained with observed data and designed so as to provide well-timed estimations of future requests. The said ensemble has the ability to predict the amount of future user requests with a root mean squared error below 0.06\%. Thanks to prediction, advance resource provision can be performed for the duration of a request peak and for just the right amount of resources, hence avoiding over-provisioning and associated costs. Moreover, reliable provision lets users enjoy a level of availability of services unaffected by load variations

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN
    corecore