15,804 research outputs found

    Brain Tumor Segmentation Based on Refined Fully Convolutional Neural Networks with A Hierarchical Dice Loss

    Full text link
    As a basic task in computer vision, semantic segmentation can provide fundamental information for object detection and instance segmentation to help the artificial intelligence better understand real world. Since the proposal of fully convolutional neural network (FCNN), it has been widely used in semantic segmentation because of its high accuracy of pixel-wise classification as well as high precision of localization. In this paper, we apply several famous FCNN to brain tumor segmentation, making comparisons and adjusting network architectures to achieve better performance measured by metrics such as precision, recall, mean of intersection of union (mIoU) and dice score coefficient (DSC). The adjustments to the classic FCNN include adding more connections between convolutional layers, enlarging decoders after up sample layers and changing the way shallower layers' information is reused. Besides the structure modification, we also propose a new classifier with a hierarchical dice loss. Inspired by the containing relationship between classes, the loss function converts multiple classification to multiple binary classification in order to counteract the negative effect caused by imbalance data set. Massive experiments have been done on the training set and testing set in order to assess our refined fully convolutional neural networks and new types of loss function. Competitive figures prove they are more effective than their predecessors.Comment: 14 pages, 7 figures, 6 table

    Reducing the Model Variance of a Rectal Cancer Segmentation Network

    Full text link
    In preoperative imaging, the demarcation of rectal cancer with magnetic resonance images provides an important basis for cancer staging and treatment planning. Recently, deep learning has greatly improved the state-of-the-art method in automatic segmentation. However, limitations in data availability in the medical field can cause large variance and consequent overfitting to medical image segmentation networks. In this study, we propose methods to reduce the model variance of a rectal cancer segmentation network by adding a rectum segmentation task and performing data augmentation; the geometric correlation between the rectum and rectal cancer motivated the former approach. Moreover, we propose a method to perform a bias-variance analysis within an arbitrary region-of-interest (ROI) of a segmentation network, which we applied to assess the efficacy of our approaches in reducing model variance. As a result, adding a rectum segmentation task reduced the model variance of the rectal cancer segmentation network within tumor regions by a factor of 0.90; data augmentation further reduced the variance by a factor of 0.89. These approaches also reduced the training duration by a factor of 0.96 and a further factor of 0.78, respectively. Our approaches will improve the quality of rectal cancer staging by increasing the accuracy of its automatic demarcation and by providing rectum boundary information since rectal cancer staging requires the demarcation of both rectum and rectal cancer. Besides such clinical benefits, our method also enables segmentation networks to be assessed with bias-variance analysis within an arbitrary ROI, such as a cancerous region.Comment: published at IEEE ACCES

    Optimizing and Visualizing Deep Learning for Benign/Malignant Classification in Breast Tumors

    Full text link
    Breast cancer has the highest incidence and second highest mortality rate for women in the US. Our study aims to utilize deep learning for benign/malignant classification of mammogram tumors using a subset of cases from the Digital Database of Screening Mammography (DDSM). Though it was a small dataset from the view of Deep Learning (about 1000 patients), we show that currently state of the art architectures of deep learning can find a robust signal, even when trained from scratch. Using convolutional neural networks (CNNs), we are able to achieve an accuracy of 85% and an ROC AUC of 0.91, while leading hand-crafted feature based methods are only able to achieve an accuracy of 71%. We investigate an amalgamation of architectures to show that our best result is reached with an ensemble of the lightweight GoogLe Nets tasked with interpreting both the coronal caudal view and the mediolateral oblique view, simply averaging the probability scores of both views to make the final prediction. In addition, we have created a novel method to visualize what features the neural network detects for the benign/malignant classification, and have correlated those features with well known radiological features, such as spiculation. Our algorithm significantly improves existing classification methods for mammography lesions and identifies features that correlate with established clinical markers

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    CRDN: Cascaded Residual Dense Networks for Dynamic MR Imaging with Edge-enhanced Loss Constraint

    Full text link
    Dynamic magnetic resonance (MR) imaging has generated great research interest, as it can provide both spatial and temporal information for clinical diagnosis. However, slow imaging speed or long scanning time is still one of the challenges for dynamic MR imaging. Most existing methods reconstruct Dynamic MR images from incomplete k-space data under the guidance of compressed sensing (CS) or low rank theory, which suffer from long iterative reconstruction time. Recently, deep learning has shown great potential in accelerating dynamic MR. Our previous work proposed a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training. Nevertheless, there was still a certain degree of smooth in the reconstructed images at high acceleration factors. In this work, we propose cascaded residual dense networks for dynamic MR imaging with edge-enhance loss constraint, dubbed as CRDN. Specifically, the cascaded residual dense networks fully exploit the hierarchical features from all the convolutional layers with both local and global feature fusion. We further utilize the total variation (TV) loss function, which has the edge enhancement properties, for training the networks

    Deep convolutional networks for pancreas segmentation in CT imaging

    Full text link
    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to other segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve average Dice scores of 68%+-10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.Comment: SPIE Medical Imaging conference, Orlando, FL, USA: SPIE Proceedings | Volume 9413 | Classificatio

    Baseline CNN structure analysis for facial expression recognition

    Full text link
    We present a baseline convolutional neural network (CNN) structure and image preprocessing methodology to improve facial expression recognition algorithm using CNN. To analyze the most efficient network structure, we investigated four network structures that are known to show good performance in facial expression recognition. Moreover, we also investigated the effect of input image preprocessing methods. Five types of data input (raw, histogram equalization, isotropic smoothing, diffusion-based normalization, difference of Gaussian) were tested, and the accuracy was compared. We trained 20 different CNN models (4 networks x 5 data input types) and verified the performance of each network with test images from five different databases. The experiment result showed that a three-layer structure consisting of a simple convolutional and a max pooling layer with histogram equalization image input was the most efficient. We describe the detailed training procedure and analyze the result of the test accuracy based on considerable observation.Comment: 6 pages, RO-MAN2016 Conferenc

    Fast and Efficient Zero-Learning Image Fusion

    Full text link
    We propose a real-time image fusion method using pre-trained neural networks. Our method generates a single image containing features from multiple sources. We first decompose images into a base layer representing large scale intensity variations, and a detail layer containing small scale changes. We use visual saliency to fuse the base layers, and deep feature maps extracted from a pre-trained neural network to fuse the detail layers. We conduct ablation studies to analyze our method's parameters such as decomposition filters, weight construction methods, and network depth and architecture. Then, we validate its effectiveness and speed on thermal, medical, and multi-focus fusion. We also apply it to multiple image inputs such as multi-exposure sequences. The experimental results demonstrate that our technique achieves state-of-the-art performance in visual quality, objective assessment, and runtime efficiency.Comment: 13 pages, 10 figure

    Deep Learning Methods for Parallel Magnetic Resonance Image Reconstruction

    Full text link
    Following the success of deep learning in a wide range of applications, neural network-based machine learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and image processing have been successfully applied to non-linear image reconstruction in the spirit of compressed sensing for both low dose computed tomography and accelerated MRI. The additional integration of multi-coil information to recover missing k-space lines in the MRI reconstruction process, is still studied less frequently, even though it is the de-facto standard for currently used accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given that is structured around the classical view of image space and k-space based methods. Both linear and non-linear methods are covered, followed by a discussion of recent efforts to further improve parallel imaging using machine learning, and specifically using artificial neural networks. Image-domain based techniques that introduce improved regularizers are covered as well as k-space based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed as well as recent efforts for producing open datasets and benchmarks for the community.Comment: 14 pages, 7 figure

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    corecore