55,917 research outputs found

    Multispectral Image Analysis Using Random Forest

    Get PDF
    Classical methods for classification of pixels in multispectral images include supervised classifiers such as the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector machines, and decision trees. Recently, there has been an increase of interest in ensemble learning – a method that generates many classifiers and aggregates their results. Breiman proposed Random Forestin 2001 for classification and clustering. Random Forest grows many decision trees for classification. To classify a new object, the input vector is run through each decision tree in the forest. Each tree gives a classification. The forest chooses the classification having the most votes. Random Forest provides a robust algorithm for classifying large datasets. The potential of Random Forest is not been explored in analyzing multispectral satellite images. To evaluate the performance of Random Forest, we classified multispectral images using various classifiers such as the maximum likelihood classifier, neural network, support vector machine (SVM), and Random Forest and compare their results

    Generative Mixture of Networks

    Full text link
    A generative model based on training deep architectures is proposed. The model consists of K networks that are trained together to learn the underlying distribution of a given data set. The process starts with dividing the input data into K clusters and feeding each of them into a separate network. After few iterations of training networks separately, we use an EM-like algorithm to train the networks together and update the clusters of the data. We call this model Mixture of Networks. The provided model is a platform that can be used for any deep structure and be trained by any conventional objective function for distribution modeling. As the components of the model are neural networks, it has high capability in characterizing complicated data distributions as well as clustering data. We apply the algorithm on MNIST hand-written digits and Yale face datasets. We also demonstrate the clustering ability of the model using some real-world and toy examples.Comment: 9 page

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Adaptive, locally-linear models of complex dynamics

    Get PDF
    The dynamics of complex systems generally include high-dimensional, non-stationary and non-linear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties we detail a new approach based on local linear models within windows determined adaptively from the data. While the dynamics within each window are simple, consisting of exponential decay, growth and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a novel likelihood-based hierarchical clustering and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode C.elegansC. elegans our approach identifies fine-grained behavioral states and model dynamics which fluctuate close to an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. Finally, we analyze whole-brain imaging in C.elegansC. elegans and show that the stability of global brain states changes with oxygen concentration.Comment: 25 pages, 16 figure
    corecore