758 research outputs found

    Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    Get PDF
    Abstract. Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies – Marina catchment (Singapore) and Canning River (Western Australia) – representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation

    Forecasting of Suspended Sediment in Rivers Using Artificial Neural Networks Approach

    Full text link
    Suspended sediment estimation is important to the water resources management and water quality problem. In this article, artificial neural networks (ANN), M5tree (M5T) approaches and statistical approaches such as Multiple Linear Regression (MLR), Sediment Rating Curves (SRC) are used for estimation daily suspended sediment concentration from daily temperature of water and streamflow in river. These daily datas were measured at Iowa station in US. These prediction aproaches are compared to each other according to three statistical criteria, namely, mean square errors (MSE), mean absolute relative error (MAE) and correlation coefficient (R). When the results are compared ANN approach have better forecasts suspended sediment than the other estimation methods

    An Exploration of Neural Network Modelling Options for the Upper River Ping, Thailand

    Get PDF
    This thesis reports results from a systematic experimental approach to evaluating aspects of the neural network modelling process to forecast river stage for a large, 23,600 km2 catchment in northern Thailand. The research is prompted by the absence of evidenced recommendations as to which of the array of input processes, validations and modelling procedures might be selected by a neural network forecaster. The flood issue for forecasters at Chiang Mai derives from the monsoon rainfall, which leads to serious out-of-bank flooding two to four times a year. Data for stage and rainfall is limited as the instrumentation is sparse and the historical flood record is limited in length. Neural network forecasting models are potentially very powerful forecasters where the data are limited. The challenge of this catchment is to provide adequate forecasts from data for relatively few storm events using three stage gauges and one rain gauge. Previous studies have reported forecasts with lead times of up to 18 hours. Thus, one research driver is to extend this lead time to give more warning. Eight input determination methods were systematically evaluated through thousands of model runs. The most successful method was found to be correlation and stepwise regression although the pattern was not consistent across all model runs. Cloud radar imagery was available for a few storm events. Rainfall data from a network was not available so it was decided to explore the value of the raw cloud reflectivity data as a catchment-wide surrogate for rainfall, to enhance the data record and potentially improve the forecast. The limited number of events makes drawing conclusions difficult, but for one event the forecast lead time was extended to 24-30 hours. The modelling also indicates that for this catchment where the monsoon may come from the south west or the north east, the direction of storm travel is important, indicating that developing two neural network models may be more appropriate. Internal model training and parameterisation tests suggest that future models should use Bayesian Regularization, and average across 50 runs. The number of hidden nodes should be less than the number input variables although for more complex problems, this was not necessarily the case. Ranges of normalisation made little difference. However, the minimum and maximum values used for normalisation appear to more important. The strength of the conclusions to be drawn from this research was recognised from the start as being limited by the data, but the results suggest that neural networks are both helpful modelling processes and can provide valuable forecasts in catchments with extreme rainfall and limited hydrological data. The systematic investigation of the alternative input determination methods, algorithms and internal parameters has enabled guidance to be given on appropriate model structures

    Hybrid data intelligent models and applications for water level prediction

    Get PDF
    Artificial intelligence (AI) models have been successfully applied in modeling engineering problems, including civil, water resources, electrical, and structure. The originality of the presented chapter is to investigate a non-tuned machine learning algorithm, called self-adaptive evolutionary extreme learning machine (SaE-ELM), to formulate an expert prediction model. The targeted application of the SaE-ELM is the prediction of river water level. Developing such water level prediction and monitoring models are crucial optimization tasks in water resources management and flood prediction. The aims of this chapter are (1) to conduct a comprehensive survey for AI models in water level modeling, (2) to apply a relatively new ML algorithm (i.e., SaE-ELM) for modeling water level, (3) to examine two different time scales (e.g., daily and monthly), and (4) to compare the inspected model with the extreme learning machine (ELM) model for validation. In conclusion, the contribution of the current chapter produced an expert and highly optimized predictive model that can yield a high-performance accuracy

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Data-Driven Surrogate Models For Flood Defence Failure Estimation : “Jarillon” Of Cali, Colombia Case Study

    Full text link
    The city of Cali is the main urban center of the south-western part of Colombia. It is located along the Cauca river, the second largest in the country. At the moment, the embankment located along the left margin that protects the city is designed for a return period of 100 years. In this study is intended to make a probabilistic analysis for dike failure for the present state of this flood defence. The water levels inside the main stream are highly sensitive to the peak discharge of upstream near tributaries which must be included in the analysis. An existent hydrodynamic model can be used for the estimation of the possible water levels but it requires large amounts of input data and is highly time consuming. Simulation of hydrodynamics and geotechnical stability models are quite advanced right now but for reliability studies might not be the most efficient solution. Therefore meta-modeling procedures could be implemented if accurate and sufficient data is available. For this study, different data-driven surrogate models where coupled as a solution for flood defense failure calculation tools. These models where used to estimate the loads and resistance combined effects of the actual flood defense for several different failure mechanisms. Algorithms like ANN and M5P where applied for building the data-driven surrogate models for each levee failure mechanism. Calculation time was reduced sufficiently to make it a feasible solution for this kind of studies. The final models can also be used as design tools if their application ranges is sufficiently understood
    corecore