925 research outputs found

    A Survey of Decentralized Adaptive Control

    Get PDF

    A Survey of Decentralized Adaptive Control

    Get PDF
    Systems with multi inputs and multi outputs are in common controlled by centralized controllers, multivariable controllers or by a set of single input and single output controllers. The decentralized systems dominated in industry and can be found in a broad spectrum of applications ranging from robotics to civil engineering. Approaches to decentralized control design differ from each other in the assumptions ? kind of interaction, the model of the system, the model of information exchange and the control design. One of the useful approaches to decentralized control problems was the parametrization. During last years it was proven that it seems to be perspective to combine predictive and decentralized control, for example unconstrained decentralized model predictive control or adaptive decentralized control using recurrent fuzzy neural networks. Another task is to use automatic decentralized control structure selection. Adaptive control enlarges the area of usage at decentralized controllers. AdaptiveZ(MSM7088352101

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Wastewater Treatment and Reuse Technologies

    Get PDF
    This edited volume is a collection of 12 publications from esteemed research groups around the globe. The articles belong to the following broad categories: biological treatment process parameters, sludge management and disinfection, removal of trace organic contaminants, removal of heavy metals, and synthesis and fouling control of membranes for wastewater treatment

    Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Time-Delay Systems with Unknown Dead-Zone Input

    Get PDF
    The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the proposed approach

    Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Time-Delay Systems with Unknown Dead-Zone Input

    Get PDF
    The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the proposed approach

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Modelling activated sludge wastewater treatment plants using artificial intelligence techniques (fuzzy logic and neural networks)

    Get PDF
    Activated sludge process (ASP) is the most commonly used biological wastewater treatment system. Mathematical modelling of this process is important for improving its treatment efficiency and thus the quality of the effluent released into the receiving water body. This is because the models can help the operator to predict the performance of the plant in order to take cost-effective and timely remedial actions that would ensure consistent treatment efficiency and meeting discharge consents. However, due to the highly complex and non-linear characteristics of this biological system, traditional mathematical modelling of this treatment process has remained a challenge. This thesis presents the applications of Artificial Intelligence (AI) techniques for modelling the ASP. These include the Kohonen Self Organising Map (KSOM), backpropagation artificial neural networks (BPANN), and adaptive network based fuzzy inference system (ANFIS). A comparison between these techniques has been made and the possibility of the hybrids between them was also investigated and tested. The study demonstrated that AI techniques offer viable, flexible and effective modelling methodology alternative for the activated sludge system. The KSOM was found to be an attractive tool for data preparation because it can easily accommodate missing data and outliers and because of its power in extracting salient features from raw data. As a consequence of the latter, the KSOM offers an excellent tool for the visualisation of high dimensional data. In addition, the KSOM was used to develop a software sensor to predict biological oxygen demand. This soft-sensor represents a significant advance in real-time BOD operational control by offering a very fast estimation of this important wastewater parameter when compared to the traditional 5-days bio-essay BOD test procedure. Furthermore, hybrids of KSOM-ANN and KSOM-ANFIS were shown to result much more improved model performance than using the respective modelling paradigms on their own.Damascus Universit
    corecore