4 research outputs found

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Strategies for Untargeted Biomarker Discovery in Biological Fluids

    Get PDF
    The health status of an organism modulates the dynamic and complex interplay of biochemical species that make-up the body and fluids of the organism. As such, these biological fluids are routinely used for diagnostic testing, yet they are often not used to their full potential. For instance, amniotic fluid (AF), the fluid that surrounds the fetus during gestation, is collected primarily for genetic testing from women with identified risk factors. The AF proteome and/or metabolome are seldom considered and represent a largely untapped wealth of relevant clinical information. Extensive, multi-analyte data can be collected from biological samples with modern analytical instrumentation. However, sophisticated data preprocessing and analysis (i.e. chemometrics) are required to reveal the relationships between the biochemical signals and the health status. This thesis seeks to demonstrate that untargeted biomarker discovery strategies can be efficiently applied to the task of finding novel biomarkers and complement the traditional hypothesis driven approaches. In the work underlying this thesis, a chemometric data analysis strategy was developed to search for biomarkers in capillary electrophoresis (CE) separations data. The absorbance data from amniotic fluid samples (n=107) collected at 15 weeks gestation, at 195 +/- 4 nm, was normalized, time aligned with Correlation Optimized Warping and reduced to a smaller number of variables by Haar transformation. The reduced data was then classified into normal or abnormal health classes by using a Bayes classifier algorithm. The chemometric data analysis was first employed to find biomarkers of gestational diabetes mellitus (GDM) and revealed that human serum albumin (HSA) could predict the early onset of disease. The same approach was successfully used to identify cases of large-for-gestational age (LGA) with the same AF CE-UV data. It was also employed for the classification of embryos with high and low reproductive potential using in vitro fertilization (IVF) culture media analyzed by CE-UV. Overall, a chemometric method was developed to perform untargeted biomarker discovery in biological samples and provide new means to detect GDM pregnancies, LGA neonates and viable embryos in IVF. The method was successful at identifying biomarkers of interest and showed high flexibility and transferability to other biological fluids

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome
    corecore