277 research outputs found

    Review of Traditional Chinese Medicine Pulse Diagnosis Quantification

    Get PDF

    An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as An Example

    Get PDF
    In this work, an ontology-based model for AI-assisted medicine side-effect (SE) prediction is developed, where three main components, including the drug model, the treatment model, and the AI-assisted prediction model, of proposed model are presented. To validate the proposed model, an ANN structure is established and trained by two hundred and forty-two TCM prescriptions. These data are gathered and classified from the most famous ancient TCM book and more than one thousand SE reports, in which two ontology-based attributions, hot and cold, are introduced to evaluate whether the prescription will cause SE or not. The results preliminarily reveal that it is a relationship between the ontology-based attributions and the corresponding predicted indicator that can be learnt by AI for predicting the SE, which suggests the proposed model has a potential in AI-assisted SE prediction. However, it should be noted that, the proposed model highly depends on the sufficient clinic data, and hereby, much deeper exploration is important for enhancing the accuracy of the prediction

    Pulse diagnosis using signal processing and machine learning techniques

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Electrical and Electronic Engineering, May 2021For many centuries, pulse diagnosis has been a technique studied and applied in determining the state of health of the human body. However, its subjective nature puts it at a disadvantage in presenting an accurate diagnosis of the human body. In this project, practical research is done to standardize pulse diagnosis by acquiring body signals and applying signal processing and machine learning techniques for analysis. A prototype acquisition system is designed to obtain the body signals such as the pressure pulse waves from arteries and ECG signals. The system's efficiency was verified using cross-correlation analysis between the data acquired from the system and the standard data from Lei Zhang’s database and MIT physio net database. For the diagnostic system for the signal analysis, the time domain, frequency domain, and time-frequency domain of the signal processing techniques are adopted to extract features such as the power spectral density to be further used for classification and distinction between different signal groups. Applying the different techniques showed a distinction between the different groups of signals that aided the Support Vector Machine and K-Nearest Neighbour classification models to achieve above 90% and 80% accuracy. The experimental process and results provided insight into ways pulse diagnosis could be standardized for healthcare services.Ashesi Universit

    Heart rates estimation using rPPG methods in challenging imaging conditions

    Get PDF
    Abstract. The cardiovascular system plays a crucial role in maintaining the body’s equilibrium by regulating blood flow and oxygen supply to different organs and tissues. While contact-based techniques like electrocardiography and photoplethysmography are commonly used in healthcare and clinical monitoring, they are not practical for everyday use due to their skin contact requirements. Therefore, non-contact alternatives like remote photoplethysmography (rPPG) have gained significant attention in recent years. However, extracting accurate heart rate information from rPPG signals under challenging imaging conditions, such as image degradation and occlusion, remains a significant challenge. Therefore, this thesis aims to investigate the effectiveness of rPPG methods in extracting heart rate information from rPPG signals in these imaging conditions. It evaluates the effectiveness of both traditional rPPG approaches and rPPG pre-trained deep learning models in the presence of real-world image transformations, such as occlusion of the faces by sunglasses or facemasks, as well as image degradation caused by noise artifacts and motion blur. The study also explores various image restoration techniques to enhance the performance of the selected rPPG methods and experiments with various fine-tuning methods of the best-performing pre-trained model. The research was conducted on three databases, namely UBFC-rPPG, UCLA-rPPG, and UBFC-Phys, and includes comprehensive experiments. The results of this study offer valuable insights into the efficacy of rPPG in practical scenarios and its potential as a non-contact alternative to traditional cardiovascular monitoring techniques

    Automated deep phenotyping of the cardiovascular system using magnetic resonance imaging

    Get PDF
    Across a lifetime, the cardiovascular system must adapt to a great range of demands from the body. The individual changes in the cardiovascular system that occur in response to loading conditions are influenced by genetic susceptibility, and the pattern and extent of these changes have prognostic value. Brachial blood pressure (BP) and left ventricular ejection fraction (LVEF) are important biomarkers that capture this response, and their measurements are made at high resolution. Relatively, clinical analysis is crude, and may result in lost information and the introduction of noise. Digital information storage enables efficient extraction of information from a dataset, and this strategy may provide more precise and deeper measures to breakdown current phenotypes into their component parts. The aim of this thesis was to develop automated analysis of cardiovascular magnetic resonance (CMR) imaging for more detailed phenotyping, and apply these techniques for new biological insights into the cardiovascular response to different loading conditions. I therefore tested the feasibility and clinical utility of computational approaches for image and waveform analysis, recruiting and acquiring additional patient cohorts where necessary, and then applied these approaches prospectively to participants before and after six-months of exercise training for a first-time marathon. First, a multi-centre, multi-vendor, multi-field strength, multi-disease CMR resource of 110 patients undergoing repeat imaging in a short time-frame was assembled. The resource was used to assess whether automated analysis of LV structure and function is feasible on real-world data, and if it can improve upon human precision. This showed that clinicians can be confident in detecting a 9% change in EF or a 20g change in LV mass. This will be difficult to improve by clinicians because the greatest source of human error was attributable to the observer rather than modifiable factors. Having understood these errors, a convolutional neural network was trained on separate multi-centre data for automated analysis and was successfully generalizable to the real-world CMR data. Precision was similar to human analysis, and performance was 186 times faster. This real-world benchmarking resource has been made freely available (thevolumesresource.com). Precise automated segmentations were then used as a platform to delve further into the LV phenotype. Global LVEFs measured from CMR imaging in 116 patients with severe aortic stenosis were broken down into ~10 million regional measurements of structure and function, represented by computational three-dimensional LV models for each individual. A cardiac atlas approach was used to compile, label, segment and represent these data. Models were compared with healthy matched controls, and co-registered with follow-up one year after aortic valve replacement (AVR). This showed that there is a tendency to asymmetric septal hypertrophy in all patients with severe aortic stenosis (AS), rather than a characteristic specific to predisposed patients. This response to AS was more unfavourable in males than females (associated with higher NT-proBNP, and lower blood pressure), but was more modifiable with AVR. This was not detected using conventional analysis. Because cardiac function is coupled with the vasculature, a novel integrated assessment of the cardiovascular system was developed. Wave intensity theory was used to combine central blood pressure and CMR aortic blood flow-velocity waveforms to represent the interaction of the heart with the vessels in terms of traveling energy waves. This was performed and then validated in 206 individuals (the largest cohort to date), demonstrating inefficient ventriculo-arterial coupling in female sex and healthy ageing. CMR imaging was performed in 236 individuals before training for a first-time marathon and 138 individuals were followed-up after marathon completion. After training, systolic/diastolic blood pressure reduced by 4/3mmHg, descending aortic stiffness decreased by 16%, and ventriculo-arterial coupling improved by 14%. LV mass increased slightly, with a tendency to more symmetrical hypertrophy. The reduction in aortic stiffness was equivalent to a 4-year reduction in estimated biological aortic age, and the benefit was greater in older, male, and slower individuals. In conclusion, this thesis demonstrates that automating analysis of clinical cardiovascular phenotypes is precise with significant time-saving. Complex data that is usually discarded can be used efficiently to identify new biology. Deeper phenotypes developed in this work inform risk reduction behaviour in healthy individuals, and demonstrably deliver a more sensitive marker of LV remodelling, potentially enhancing risk prediction in severe aortic stenosis

    Novel Approaches to Pervasive and Remote Sensing in Cardiovascular Disease Assessment

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible for 45% of all deaths. Nevertheless, their mortality is decreasing in the last decade due to better prevention, diagnosis, and treatment resources. An important medical instrument for the latter processes is the Electrocardiogram (ECG). The ECG is a versatile technique used worldwide for its ease of use, low cost, and accessibility, having evolved from devices that filled up a room, to small patches or wrist- worn devices. Such evolution allowed for more pervasive and near-continuous recordings. The analysis of an ECG allows for studying the functioning of other physiological systems of the body. One such is the Autonomic Nervous System (ANS), responsible for controlling key bodily functions. The ANS can be studied by analyzing the characteristic inter-beat variations, known as Heart Rate Variability (HRV). Leveraging this relation, a pilot study was developed, where HRV was used to quantify the contribution of the ANS in modulating cardioprotection offered by an experimental medical procedure called Remote Ischemic Conditioning (RIC), offering a more objective perspective. To record an ECG, electrodes are responsible for converting the ion-propagated action potential to electrons, needed to record it. They are produced from different materials, including metal, carbon-based, or polymers. Also, they can be divided into wet (if an elec- trolyte gel is used) or dry (if no added electrolyte is used). Electrodes can be positioned either inside the body (in-the-person), attached to the skin (on-the-body), or embedded in daily life objects (off-the-person), with the latter allowing for more pervasive recordings. To this effect, a novel mobile acquisition device for recording ECG rhythm strips was developed, where polymer-based embedded electrodes are used to record ECG signals similar to a medical-grade device. One drawback of off-the-person solutions is the increased noise, mainly caused by the intermittent contact with the recording surfaces. A new signal quality metric was developed based on delayed phase mapping, a technique that maps time series to a two-dimensional space, which is then used to classify a segment into good or noisy. Two different approaches were developed, one using a popular image descriptor, the Hu image moments; and the other using a Convolutional Neural Network, both with promising results for their usage as signal quality index classifiers.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, res- ponsáveis por 45% de todas estas. No entanto, a sua mortalidade tem vindo a diminuir na última década, devido a melhores recursos na prevenção, diagnóstico e tratamento. Um instrumento médico importante para estes recursos é o Eletrocardiograma (ECG). O ECG é uma técnica versátil utilizada em todo o mundo pela sua facilidade de uso, baixo custo e acessibilidade, tendo evoluído de dispositivos que ocupavam uma sala inteira para pequenos adesivos ou dispositivos de pulso. Tal evolução permitiu aquisições mais pervasivas e quase contínuas. A análise de um ECG permite estudar o funcionamento de outros sistemas fisiológi- cos do corpo. Um deles é o Sistema Nervoso Autônomo (SNA), responsável por controlar as principais funções corporais. O SNA pode ser estudado analisando as variações inter- batidas, conhecidas como Variabilidade da Frequência Cardíaca (VFC). Aproveitando essa relação, foi desenvolvido um estudo piloto, onde a VFC foi utilizada para quantificar a contribuição do SNA na modulação da cardioproteção oferecida por um procedimento mé- dico experimental, denominado Condicionamento Isquêmico Remoto (CIR), oferecendo uma perspectiva mais objetiva. Na aquisição de um ECG, os elétrodos são os responsáveis por converter o potencial de ação propagado por iões em eletrões, necessários para a sua recolha. Estes podem ser produzidos a partir de diferentes materiais, incluindo metal, à base de carbono ou polímeros. Além disso, os elétrodos podem ser classificados em húmidos (se for usado um gel eletrolítico) ou secos (se não for usado um eletrólito adicional). Os elétrodos podem ser posicionados dentro do corpo (dentro-da-pessoa), colocados em contacto com a pele (na-pessoa) ou embutidos em objetos da vida quotidiana (fora-da-pessoa), sendo que este último permite gravações mais pervasivas . Para este efeito, foi desenvolvido um novo dispositivo de aquisição móvel para gravar sinal de ECG, onde elétrodos embutidos à base de polímeros são usados para recolher sinais de ECG semelhantes a um dispositivo de grau médico. Uma desvantagem das soluções onde os elétrodos estão embutidos é o aumento do ruído, causado principalmente pelo contato intermitente com as superfícies de aquisição. Uma nova métrica de qualidade de sinal foi desenvolvida com base no mapeamento de fase atrasada, uma técnica que mapeia séries temporais para um espaço bidimensional, que é então usado para classificar um segmento em bom ou ruidoso. Duas abordagens diferentes foram desenvolvidas, uma usando um popular descritor de imagem, e outra utilizando uma Rede Neural Convolucional, com resultados promissores para o seu uso como classificadores de qualidade de sinal

    C-Trend parameters and possibilities of federated learning

    Get PDF
    Abstract. In this observational study, federated learning, a cutting-edge approach to machine learning, was applied to one of the parameters provided by C-Trend Technology developed by Cerenion Oy. The aim was to compare the performance of federated learning to that of conventional machine learning. Additionally, the potential of federated learning for resolving the privacy concerns that prevent machine learning from realizing its full potential in the medical field was explored. Federated learning was applied to burst-suppression ratio’s machine learning and it was compared to the conventional machine learning of burst-suppression ratio calculated on the same dataset. A suitable aggregation method was developed and used in the updating of the global model. The performance metrics were compared and a descriptive analysis including box plots and histograms was conducted. As anticipated, towards the end of the training, federated learning’s performance was able to approach that of conventional machine learning. The strategy can be regarded to be valid because the performance metric values remained below the set test criterion levels. With this strategy, we will potentially be able to make use of data that would normally be kept confidential and, as we gain access to more data, eventually develop machine learning models that perform better. Federated learning has some great advantages and utilizing it in the context of qEEGs’ machine learning could potentially lead to models, which reach better performance by receiving data from multiple institutions without the difficulties of privacy restrictions. Some possible future directions include an implementation on heterogeneous data and on larger data volume.C-Trend-teknologian parametrit ja federoidun oppimisen mahdollisuudet. Tiivistelmä. Tässä havainnointitutkimuksessa federoitua oppimista, koneoppimisen huippuluokan lähestymistapaa, sovellettiin yhteen Cerenion Oy:n kehittämään C-Trend-teknologian tarjoamaan parametriin. Tavoitteena oli verrata federoidun oppimisen suorituskykyä perinteisen koneoppimisen suorituskykyyn. Lisäksi tutkittiin federoidun oppimisen mahdollisuuksia ratkaista yksityisyyden suojaan liittyviä rajoitteita, jotka estävät koneoppimista hyödyntämästä täyttä potentiaaliaan lääketieteen alalla. Federoitua oppimista sovellettiin purskevaimentumasuhteen koneoppimiseen ja sitä verrattiin purskevaimentumasuhteen laskemiseen, johon käytettiin perinteistä koneoppimista. Kummankin laskentaan käytettiin samaa dataa. Sopiva aggregointimenetelmä kehitettiin, jota käytettiin globaalin mallin päivittämisessä. Suorituskykymittareiden tuloksia verrattiin keskenään ja tehtiin kuvaileva analyysi, johon sisältyi laatikkokuvioita ja histogrammeja. Odotetusti opetuksen loppupuolella federoidun oppimisen suorituskyky pystyi lähestymään perinteisen koneoppimisen suorituskykyä. Menetelmää voidaan pitää pätevänä, koska suorituskykymittarin arvot pysyivät alle asetettujen testikriteerien tasojen. Tämän menetelmän avulla voimme ehkä hyödyntää dataa, joka normaalisti pidettäisiin salassa, ja kun saamme lisää dataa käyttöömme, voimme lopulta kehittää koneoppimismalleja, jotka saavuttavat paremman suorituskyvyn. Federoidulla oppimisella on joitakin suuria etuja, ja sen hyödyntäminen qEEG:n koneoppimisen yhteydessä voisi mahdollisesti johtaa malleihin, jotka saavuttavat paremman suorituskyvyn saamalla tietoja useista eri lähteistä ilman yksityisyyden suojaan liittyviä rajoituksia. Joitakin mahdollisia tulevia suuntauksia ovat muun muassa heterogeenisen datan ja suurempien tietomäärien käyttö
    corecore