2,185 research outputs found

    Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability

    Full text link
    Heterogeneous computing, which combines devices with different architectures, is rising in popularity, and promises increased performance combined with reduced energy consumption. OpenCL has been proposed as a standard for programing such systems, and offers functional portability. It does, however, suffer from poor performance portability, code tuned for one device must be re-tuned to achieve good performance on another device. In this paper, we use machine learning-based auto-tuning to address this problem. Benchmarks are run on a random subset of the entire tuning parameter configuration space, and the results are used to build an artificial neural network based model. The model can then be used to find interesting parts of the parameter space for further search. We evaluate our method with different benchmarks, on several devices, including an Intel i7 3770 CPU, an Nvidia K40 GPU and an AMD Radeon HD 7970 GPU. Our model achieves a mean relative error as low as 6.1%, and is able to find configurations as little as 1.3% worse than the global minimum.Comment: This is a pre-print version an article to be published in the Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). For personal use onl

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Enabling electronic prognostics using thermal data

    Get PDF
    Prognostics is a process of assessing the extent of deviation or degradation of a product from its expected normal operating condition, and then, based on continuous monitoring, predicting the future reliability of the product. By being able to determine when a product will fail, procedures can be developed to provide advanced warning of failures, optimize maintenance, reduce life cycle costs, and improve the design, qualification and logistical support of fielded and future systems. In the case of electronics, the reliability is often influenced by thermal loads, in the form of steady-state temperatures, power cycles, temperature gradients, ramp rates, and dwell times. If one can continuously monitor the thermal loads, in-situ, this data can be used in conjunction with precursor reasoning algorithms and stress-and-damage models to enable prognostics. This paper discusses approaches to enable electronic prognostics and provides a case study of prognostics using thermal data.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    • …
    corecore