63 research outputs found

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    The Humanoid Saika that Catches a Thrown Ball

    Get PDF

    Shape classification: towards a mathematical description of the face

    Get PDF
    Recent advances in biostereometric techniques have led to the quick and easy acquisition of 3D data for facial and other biological surfaces. This has led facial surgeons to express dissatisfaction with landmark-based methods for analysing the shape of the face which use only a small part of the data available, and to seek a method for analysing the face which maximizes the use of this extensive data set. Scientists working in the field of computer vision have developed a variety of methods for the analysis and description of 2D and 3D shape. These methods are reviewed and an approach, based on differential geometry, is selected for the description of facial shape. For each data point, the Gaussian and mean curvatures of the surface are calculated. The performance of three algorithms for computing these curvatures are evaluated for mathematically generated standard 3D objects and for 3D data obtained from an optical surface scanner. Using the signs of these curvatures, the face is classified into eight 'fundamental surface types' - each of which has an intuitive perceptual meaning. The robustness of the resulting surface type description to errors in the data is determined together with its repeatability. Three methods for comparing two surface type descriptions are presented and illustrated for average male and average female faces. Thus a quantitative description of facial change, or differences between individual's faces, is achieved. The possible application of artificial intelligence techniques to automate this comparison is discussed. The sensitivity of the description to global and local changes to the data, made by mathematical functions, is investigated. Examples are given of the application of this method for describing facial changes made by facial reconstructive surgery and implications for defining a basis for facial aesthetics using shape are discussed. It is also applied to investigate the role played by the shape of the surface in facial recognition

    One Tone, Two Ears, Three Dimensions: An investigation of qualitative echolocation strategies in synthetic bats and real robots

    Get PDF
    Institute of Perception, Action and BehaviourThe aim of the work reported in this thesis is to investigate a methodology for studying perception by building and testing robotic models of animal sensory mechanisms. Much of Artificial Intelligence studies agent perception by exploring architectures for linking (often abstract) sensors and motors so as to give rise to particular behaviour. By contrast, this work proposes that perceptual investigations should begin with a characterisation of the underlying physical laws which govern the specific interaction of a sensor (or actuator) with its environment throughout the execution of a task. Moreover, it demonstrates that, through an understanding of task-physics, problems for which architectural solutions or explanations are often proposed may be solved more simply at the sensory interface - thereby minimising subsequent computation. This approach is applied to an investigation of the acoustical cues that may be exploited by several species of tone emitting insectivorous bats (species in the families Rhinolophidae and Hipposideridae) which localise prey using systematic pinnae scanning movements. From consideration of aspects of the sound filtering performed by the external and inner ear or these bats, three target localisation mechanisms are hypothesised and tested aboard a 6 degree-of-freedom, binaural, robotic echolocation system.In the first case, it is supposed that echolocators with narrow-band call structures use pinna movement to alter the directional sensitivity of their perceptual systems in the same whay that broad-band emitting bats rely on pinnae morphology to alter acoustic directionality at different frequencies.Scanning receivers also create dynamic cues - in the form of frequency and amplitude modulations - which very systematically with target angle. The second hypothesis investigated involves the extraction of timing cues from amplitude modulated echo envelopes
    • …
    corecore