2,930 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Adaptive Control for Robotic Manipulators base on RBF Neural Network

    Get PDF
    An adaptive neural network controller is brought forward by the paper to solve trajectory tracking problems of robotic manipulators with uncertainties.  The  first  scheme consists of  a PD feedback  and  a  dynamic  compensator  which is  composed by  neural  network controller and  variable  structure controller.  Neutral network controller is designed to adaptive learn and compensate the unknown uncertainties, variable   structure controller is designed to eliminate approach errors of neutral network. The adaptive weight learning algorithm of neural network is designed to ensure online real-time adjustment, offline learning phase is not need; Global asymptotic stability (GAS) of system base on Lyapunov theory is analysised to ensure the convergence of the algorithm. The simulation results show that the kind of the control scheme is effective and has good robustness

    Adaptive Control of Space Robot Manipulators with Task Space Base on Neural Network

    Get PDF
    As are considered, the body posture is controlled and position cannot control, space manipulator system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control strategy based on neural network is put forward. Neural network on-line modeling technology is used to approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural network approximation error and external bounded disturbance are eliminated by variable structure control controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need to take the training process, globally asymptotically stable of the closed-loop system is proved based on the lyapunov theory. The simulation results show that the designed controller can achieve high control precision has the important value of engineering application

    Control Techniques for Robot Manipulator Systems with Modeling Uncertainties

    Get PDF
    This dissertation describes the design and implementation of various nonlinear control strategies for robot manipulators whose dynamic or kinematic models are uncertain. Chapter 2 describes the development of an adaptive task-space tracking controller for robot manipulators with uncertainty in the kinematic and dynamic models. The controller is developed based on the unit quaternion representation so that singularities associated with the otherwise commonly used three parameter representations are avoided. Experimental results for a planar application of the Barrett whole arm manipulator (WAM) are provided to illustrate the performance of the developed adaptive controller. The controller developed in Chapter 2 requires the assumption that the manipulator models are linearly parameterizable. However there might be scenarios where the structure of the manipulator dynamic model itself is unknown due to difficulty in modeling. One such example is the continuum or hyper-redundant robot manipulator. These manipulators do not have rigid joints, hence, they are difficult to model and this leads to significant challenges in developing high-performance control algorithms. In Chapter 3, a joint level controller for continuum robots is described which utilizes a neural network feedforward component to compensate for dynamic uncertainties. Experimental results are provided to illustrate that the addition of the neural network feedforward component to the controller provides improved tracking performance. While Chapter\u27s 2 and 3 described two different joint controllers for robot manipulators, in Chapter 4 a controller is developed for the specific task of whole arm grasping using a kinematically redundant robot manipulator. The whole arm grasping control problem is broken down into two steps; first, a kinematic level path planner is designed which facilitates the encoding of both the end-effector position as well as the manipulators self-motion positioning information as a desired trajectory for the manipulator joints. Then, the controller described in Chapter 3, which provides asymptotic tracking of the encoded desired joint trajectory in the presence of dynamic uncertainties is utilized. Experimental results using the Barrett Whole Arm Manipulator are presented to demonstrate the validity of the approach

    Nonlinear Control Techniques for Robot Manipulators

    Get PDF
    This Masters thesis describes the design and implementation of control strategies for the following topics of research: i) Whole Arm Grasping Control for Redundant Robot Manipulators, ii) Neural Network Grasping Controller for Continuum Robots and, iii) Coordination Control for Haptic and Teleoperator Systems. An approach to whole arm grasping of objects using redundant robot manipulators is presented. A kinematic control which facilitates the encoding of both the end-effector position, as well as body self-motion positioning information as a desired trajectory signal for the manipulator joints is developed. An approach is presented to whole arm grasping control for continuum robots. The grasping controller is developed in two stages; high level path planning for the grasping objective, and a low level joint controller using a neural network feedforward component to compensate for dynamic uncertainties. Lastly, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems

    Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller

    Get PDF
    This paper presents a dynamic surface controller (DSC) for dual-arm robots (DAR) tracking desired trajectories. The DSC algorithm is based on backstepping technique and multiple sliding surface control principle, but with an important addition. In the design of DSC, low-pass filters are included which prevent the complexity in computing due to the “explosion of terms”, i.e. the number of terms in the control law rapidly gets out of hand. Therefore, a controller constructed from this algorithm is simulated on a four degrees of freedom (DOF) dual-arm robot with a complex kinetic dynamic model. Moreover, the stability of the control system is proved by using Lyapunov theory. The simulation results show the effectiveness of the controller which provide precise tracking performance of the manipulator
    corecore