1,522 research outputs found

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A hybrid queueing model for fast broadband networking simulation

    Get PDF
    PhDThis research focuses on the investigation of a fast simulation method for broadband telecommunication networks, such as ATM networks and IP networks. As a result of this research, a hybrid simulation model is proposed, which combines the analytical modelling and event-driven simulation modelling to speeding up the overall simulation. The division between foreground and background traffic and the way of dealing with these different types of traffic to achieve improvement in simulation time is the major contribution reported in this thesis. Background traffic is present to ensure that proper buffering behaviour is included during the course of the simulation experiments, but only the foreground traffic of interest is simulated, unlike traditional simulation techniques. Foreground and background traffic are dealt with in a different way. To avoid the need for extra events on the event list, and the processing overhead, associated with the background traffic, the novel technique investigated in this research is to remove the background traffic completely, adjusting the service time of the queues for the background traffic to compensate (in most cases, the service time for the foreground traffic will increase). By removing the background traffic from the event-driven simulator the number of cell processing events dealt with is reduced drastically. Validation of this approach shows that, overall, the method works well, but the simulation using this method does have some differences compared with experimental results on a testbed. The reason for this is mainly because of the assumptions behind the analytical model that make the modelling tractable. Hence, the analytical model needs to be adjusted. This is done by having a neural network trained to learn the relationship between the input traffic parameters and the output difference between the proposed model and the testbed. Following this training, simulations can be run using the output of the neural network to adjust the analytical model for those particular traffic conditions. The approach is applied to cell scale and burst scale queueing to simulate an ATM switch, and it is also used to simulate an IP router. In all the applications, the method ensures a fast simulation as well as an accurate result

    Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless Networks

    Full text link
    Hoy en día existen varias tecnologías que coexisten en una misma zona formando un sistema heterogéneo. Además, este hecho se espera que se vuelva más acentuado con todas las nuevas tecnologías que se están estandarizando actualmente. Hasta ahora, generalmente son los usuarios los que eligen la tecnología a la que se van a conectar, ya sea configurando sus terminales o usando terminales distintos. Sin embargo, esta solución es incapaz de aprovechar al máximo todos los recursos. Para ello es necesario un nuevo conjunto de estrategias. Estas estrategias deben gestionar los recursos radioeléctricos conjuntamente y asegurar la satisfacción de la calidad de servicio de los usuarios. Siguiendo esta idea, esta Tesis propone dos nuevos algoritmos. El primero es un algoritmo de asignación dinámica de recusos conjunto (JDRA) capaz de asignar recursos a usuarios y de distribuir usuarios entre tecnologías al mismo tiempo. El algoritmo está formulado en términos de un problema de optimización multi-objetivo que se resuelve usando redes neuronales de Hopfield (HNNs). Las HNNs son interesantes ya que se supone que pueden alcanzar soluciones sub-óptimas en cortos periodos de tiempo. Sin embargo, implementaciones reales de las HNNs en ordenadores pierden esta rápida respuesta. Por ello, en esta Tesis se analizan las causas y se estudian posibles mejoras. El segundo algoritmo es un algoritmo de control de admisión conjunto (JCAC) que admite y rechaza usuarios teniendo en cuenta todas las tecnologías al mismo tiempo. La principal diferencia con otros algorimos propuestos es que éstos últimos toman las dicisiones de admisión en cada tecnología por separado. Por ello, se necesita de algún mecanismo para seleccionar la tecnología a la que los usuarios se van a conectar. Por el contrario, la técnica propuesta en esta Tesis es capaz de tomar decisiones en todo el sistema heterogéneo. Por lo tanto, los usuarios no se enlazan con ninguna tecnología antes de ser admitidos.Calabuig Soler, D. (2010). Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7348Palanci

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Multimedia Traffic Engineering in Next Generation Networks

    Get PDF
    Due to high speed Internet and Multimedia applications, future wireless communication are expected to support multimedia traffic such as voice, video and text with a variety of Quality of Service (QoS) requirements and make efficient use of radio resources. Such kind of traffic requires high level of QoS guarantees. Traffic management is a process of regulating the traffic over network. Since, multimedia traffic is more sensitive, therefore it requires special measures while transmission, especially in wireless networks. There are different queuing disciplines which are used to police the traffic, the Priority Queue and RIO (RED with In/Out) are queuing disciplines, PQ is used to prioritize the traffic, and the later is used to drop the lower priority packets at the time of congestion. Proposed solution is the integration of Priority Queue with RIO, which will serve as a classifier to prioritize the traffic and then it will also serve as a scheduler by dropping lower priority traffic when the congestion state occur. Simulation results show that by applying proposed Traffic Management Strategy (PriRIO), it assigns stable bandwidth to the Multimedia Traffic Flow and enhances its throughput. It also shows that Packet Losses for Multimedia Traffic are very minor, that is, equivalent to none. Further, delay values for Multimedia traffic also remain below the Best Effort traffic flows. Thus, on the basis of these simulation results and analysis, PriRIO outperforms significantly, as compare to other Traffic Management Strategies

    B&W Call Admission Control for Multimedia Communication Networks

    Get PDF
    In the multimedia communication networks providing quality of service (QoS), an interface between the signal processing systems and the communication systems is the call admission control (CAC) mechanism. Owing to the heterogeneous traffic produced by diverse signal processing systems in a multimedia communication network, the traditional CAC mechanism that used only one CAC algorithm can no longer satisfy the aim of QoS CAC: Utilize the network resource to the most best and still satisfy the QoS requirements of all connections. For satisfying the aim of QoS CAC in the multimedia communication networks, this study proposed an innovative CAC mechanism called black and white CAC (B&W CAC), which uses two CAC algorithms. One of them is called black CAC controller and is used for the traffic with specifications more uncertain, which is called black traffic here. The other is call white CAC controller and is for the traffic with clearer specifications, which is call white traffic. Because white traffic is simple, an equivalent bandwidth CAC is taken as the white CAC. On the other hand, a neural network CAC (NNCAC) is employed to be the black CAC to overcome the uncertainty of black traffic. Furthermore, owing to more parameters needed in a QoS CAC mechanism, a hierarchical NNCAC is proposed instead of the common used NNCAC. Besides to accommodate more parameters, a hierarchical NNCAC can keep the complexity low. The simulation results show the B&W CAC can obtain higher utilization and still meet the QoS requirements of traffic sources
    corecore