26 research outputs found

    Self-timed field programmmable gate array architectures

    Get PDF

    FPGA-based architectures for next generation communications networks

    Get PDF
    This engineering doctorate concerns the application of Field Programmable Gate Array (FPGA) technology to some of the challenges faced in the design of next generation communications networks. The growth and convergence of such networks has fuelled demand for higher bandwidth systems, and a requirement to support a diverse range of payloads across the network span. The research which follows focuses on the development of FPGA-based architectures for two important paradigms in contemporary networking - Forward Error Correction and Packet Classification. The work seeks to combine analysis of the underlying algorithms and mathematical techniques which drive these applications, with an informed approach to the design of efficient FPGA-based circuits

    Tools for efficient Deep Learning

    Get PDF
    In the era of Deep Learning (DL), there is a fast-growing demand for building and deploying Deep Neural Networks (DNNs) on various platforms. This thesis proposes five tools to address the challenges for designing DNNs that are efficient in time, in resources and in power consumption. We first present Aegis and SPGC to address the challenges in improving the memory efficiency of DL training and inference. Aegis makes mixed precision training (MPT) stabler by layer-wise gradient scaling. Empirical experiments show that Aegis can improve MPT accuracy by at most 4\%. SPGC focuses on structured pruning: replacing standard convolution with group convolution (GConv) to avoid irregular sparsity. SPGC formulates GConv pruning as a channel permutation problem and proposes a novel heuristic polynomial-time algorithm. Common DNNs pruned by SPGC have maximally 1\% higher accuracy than prior work. This thesis also addresses the challenges lying in the gap between DNN descriptions and executables by Polygeist for software and POLSCA for hardware. Many novel techniques, e.g. statement splitting and memory partitioning, are explored and used to expand polyhedral optimisation. Polygeist can speed up software execution in sequential and parallel by 2.53 and 9.47 times on Polybench/C. POLSCA achieves 1.5 times speedup over hardware designs directly generated from high-level synthesis on Polybench/C. Moreover, this thesis presents Deacon, a framework that generates FPGA-based DNN accelerators of streaming architectures with advanced pipelining techniques to address the challenges from heterogeneous convolution and residual connections. Deacon provides fine-grained pipelining, graph-level optimisation, and heuristic exploration by graph colouring. Compared with prior designs, Deacon shows resource/power consumption efficiency improvement of 1.2x/3.5x for MobileNets and 1.0x/2.8x for SqueezeNets. All these tools are open source, some of which have already gained public engagement. We believe they can make efficient deep learning applications easier to build and deploy.Open Acces

    Ant colony optimization on runtime reconfigurable architectures

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Predicting power scalability in a reconfigurable platform

    Get PDF
    This thesis focuses on the evolution of digital hardware systems. A reconfigurable platform is proposed and analysed based on thin-body, fully-depleted silicon-on-insulator Schottky-barrier transistors with metal gates and silicide source/drain (TBFDSBSOI). These offer the potential for simplified processing that will allow them to reach ultimate nanoscale gate dimensions. Technology CAD was used to show that the threshold voltage in TBFDSBSOI devices will be controllable by gate potentials that scale down with the channel dimensions while remaining within appropriate gate reliability limits. SPICE simulations determined that the magnitude of the threshold shift predicted by TCAD software would be sufficient to control the logic configuration of a simple, regular array of these TBFDSBSOI transistors as well as to constrain its overall subthreshold power growth. Using these devices, a reconfigurable platform is proposed based on a regular 6-input, 6-output NOR LUT block in which the logic and configuration functions of the array are mapped onto separate gates of the double-gate device. A new analytic model of the relationship between power (P), area (A) and performance (T) has been developed based on a simple VLSI complexity metric of the form ATσ = constant. As σ defines the performance “return” gained as a result of an increase in area, it also represents a bound on the architectural options available in power-scalable digital systems. This analytic model was used to determine that simple computing functions mapped to the reconfigurable platform will exhibit continuous power-area-performance scaling behavior. A number of simple arithmetic circuits were mapped to the array and their delay and subthreshold leakage analysed over a representative range of supply and threshold voltages, thus determining a worse-case range for the device/circuit-level parameters of the model. Finally, an architectural simulation was built in VHDL-AMS. The frequency scaling described by σ, combined with the device/circuit-level parameters predicts the overall power and performance scaling of parallel architectures mapped to the array

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic
    corecore