14,362 research outputs found

    Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant

    Get PDF
    The energy efficiency of industrial plants is an important issue in any type of business but particularly in the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more as a means of reducing the amount of fuel that gets wasted, thereby improving productivity, ensuring better product quality, and generally increasing profits. This article describes a decision system developed for optimizing the energy efficiency of a petrochemical plant. The system has been developed after a data mining process of the parameters registered in the past. The designed system carries out an optimization process of the energy efficiency of the plant based on a combined algorithm that uses the following for obtaining a solution: On the one hand, the energy efficiency of the operation points occurred in the past and, on the other hand, a module of two neural networks to obtain new interpolated operation points. Besides, the work includes a previous discriminant analysis of the variables of the plant in order to select the parameters most important in the plant and to study the behavior of the energy efficiency index. This study also helped ensure an optimal training of the neural networks. The robustness of the system as well as its satisfactory results in the testing process (an average rise in the energy efficiency of around 7%, reaching, in some cases, up to 45%) have encouraged a consulting company (ALIATIS) to implement and to integrate the decision system as a pilot software in an SCADA

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    A framework for the near-real-time optimization of integrated oil & gas midstream processing networks

    Get PDF
    The oil and gas industry plays a key role in the world’s economy. Vast quantities of crude oil, their by-products and derivatives are produced, processed and distributed every day. Indeed, producing and processing significant volumes of crude oil requires connecting to wells in different fields that are usually spread across large geographical areas. This crude oil is then processed by Gas Oil Separation Plants (GOSPs). These facilities are often grouped into clusters that are within approximate distance from each other and then connected laterally via swing lines which allow shifting part or all of the production from one GOSP to another. Transfer lines also exist to allow processing intermediate products in neighbouring GOSPs, thereby increasing complexity and possible interactions. In return, this provides an opportunity to leverage mathematical optimization to improve network planning and load allocation. Similarly, in major oil producing countries, vast gas processing networks exist to process associated and non-associated gases. These gas plants are often located near major feed sources. Similar to GOSPs, they are also often connected through swing lines, which allow shifting feedstock from some plants to others. GOSPs and gas plants are often grouped as oil and gas midstream plants. These plants are operated on varied time horizons and plant boundaries. While plant operators are concerned with the day-to-day operation of their facility, network operators must ensure that the entire network is operated optimally and that product supply is balanced with demand. They are therefore in charge of allocating load to individual plants, while knowing each plants constraints and processing capabilities. Network planners are also in charge of producing production plans at varied time-scales, which vary from yearly to monthly and near-real time. This work aims to establish a novel framework for optimizing Oil and Gas Midstream plants for near-real time network operation. This topic has not been specifically addressed in the existing literature. It examines problems which involve operating networks of GOSPs and gas plants towards an optimal solution. It examines various modelling approaches which are suited for this specific application. It then focuses at this stage of the research on the GOSP optimization problem where it addresses optimizing the operation of a complex network of GOSPs. The goal is to operate this network such that oil production targets are met at minimum energy consumption, and therefore minimizing OpEx and Greenhouse Gas Emissions. Similarly, it is often required to operate the network such that production is maximized. This thesis proposes a novel methodology to formulate and solve this problem. It describes the level of fidelity used to represent physical process units. A Mixed Integer Non-Linear Programming (MINLP) problem is then formulated and solved to optimize load allocation, swing line flowrates and equipment utilization. The model demonstrates advanced capabilities to systematically prescribe optimal operating points. This was then applied to an existing integrated network of GOSPs and tested at varying crude oil demand levels. The results demonstrate the ability to minimize energy consumption by up to 51% in the 50% throughput case while meeting oil production targets without added capital investment.Open Acces

    From conceptual design to process design optimization: a review on flowsheet synthesis

    Get PDF
    International audienceThis paper presents the authors’ perspectives on some of the open questions and opportunities in Process Systems Engineering (PSE) focusing on process synthesis. A general overview of process synthesis is given, and the difference between Conceptual Design (CD) and Process Design (PD) is presented using an original ternary diagram. Then, a bibliometric analysis is performed to place major research team activities in the latter. An analysis of ongoing work is conducted and some perspectives are provided based on the analysis. This analysis includes symbolic knowledge representation concepts and inference techniques, i.e., ontology, that is believed to become useful in the future. Future research challenges that process synthesis will have to face, such as biomass transformation, shale production, response to spaceflight demand, modular plant design, and intermittent production of energy, are also discussed
    • …
    corecore