738 research outputs found

    Attention in hierarchical models of object recognition

    Get PDF
    Object recognition and visual attention are tightly linked processes in human perception. Over the last three decades, many models have been suggested to explain these two processes and their interactions, and in some cases these models appear to contradict each other. We suggest a unifying framework for object recognition and attention and review the existing modeling literature in this context. Furthermore, we demonstrate a proof-of-concept implementation for sharing complex features between recognition and attention as a mode of top-down attention to particular objects or object categories

    Particle Filters for Colour-Based Face Tracking Under Varying Illumination

    Get PDF
    Automatic human face tracking is the basis of robotic and active vision systems used for facial feature analysis, automatic surveillance, video conferencing, intelligent transportation, human-computer interaction and many other applications. Superior human face tracking will allow future safety surveillance systems which monitor drowsy drivers, or patients and elderly people at the risk of seizure or sudden falls and will perform with lower risk of failure in unexpected situations. This area has actively been researched in the current literature in an attempt to make automatic face trackers more stable in challenging real-world environments. To detect faces in video sequences, features like colour, texture, intensity, shape or motion is used. Among these feature colour has been the most popular, because of its insensitivity to orientation and size changes and fast process-ability. The challenge of colour-based face trackers, however, has been dealing with the instability of trackers in case of colour changes due to the drastic variation in environmental illumination. Probabilistic tracking and the employment of particle filters as powerful Bayesian stochastic estimators, on the other hand, is increasing in the visual tracking field thanks to their ability to handle multi-modal distributions in cluttered scenes. Traditional particle filters utilize transition prior as importance sampling function, but this can result in poor posterior sampling. The objective of this research is to investigate and propose stable face tracker capable of dealing with challenges like rapid and random motion of head, scale changes when people are moving closer or further from the camera, motion of multiple people with close skin tones in the vicinity of the model person, presence of clutter and occlusion of face. The main focus has been on investigating an efficient method to address the sensitivity of the colour-based trackers in case of gradual or drastic illumination variations. The particle filter is used to overcome the instability of face trackers due to nonlinear and random head motions. To increase the traditional particle filter\u27s sampling efficiency an improved version of the particle filter is introduced that considers the latest measurements. This improved particle filter employs a new colour-based bottom-up approach that leads particles to generate an effective proposal distribution. The colour-based bottom-up approach is a classification technique for fast skin colour segmentation. This method is independent to distribution shape and does not require excessive memory storage or exhaustive prior training. Finally, to address the adaptability of the colour-based face tracker to illumination changes, an original likelihood model is proposed based of spatial rank information that considers both the illumination invariant colour ordering of a face\u27s pixels in an image or video frame and the spatial interaction between them. The original contribution of this work lies in the unique mixture of existing and proposed components to improve colour-base recognition and tracking of faces in complex scenes, especially where drastic illumination changes occur. Experimental results of the final version of the proposed face tracker, which combines the methods developed, are provided in the last chapter of this manuscript

    Negative Results in Computer Vision: A Perspective

    Full text link
    A negative result is when the outcome of an experiment or a model is not what is expected or when a hypothesis does not hold. Despite being often overlooked in the scientific community, negative results are results and they carry value. While this topic has been extensively discussed in other fields such as social sciences and biosciences, less attention has been paid to it in the computer vision community. The unique characteristics of computer vision, particularly its experimental aspect, call for a special treatment of this matter. In this paper, I will address what makes negative results important, how they should be disseminated and incentivized, and what lessons can be learned from cognitive vision research in this regard. Further, I will discuss issues such as computer vision and human vision interaction, experimental design and statistical hypothesis testing, explanatory versus predictive modeling, performance evaluation, model comparison, as well as computer vision research culture

    Fast and robust road sign detection in driver assistance systems

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Road sign detection plays a critical role in automatic driver assistance systems. Road signs possess a number of unique visual qualities in images due to their specific colors and symmetric shapes. In this paper, road signs are detected by a two-level hierarchical framework that considers both color and shape of the signs. To address the problem of low image contrast, we propose a new color visual saliency segmentation algorithm, which uses the ratios of enhanced and normalized color values to capture color information. To improve computation efficiency and reduce false alarm rate, we modify the fast radial symmetry transform (RST) algorithm, and propose to use an edge pairwise voting scheme to group feature points based on their underlying symmetry in the candidate regions. Experimental results on several benchmarking datasets demonstrate the superiority of our method over the state-of-the-arts on both efficiency and robustness

    CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery

    Full text link
    Accurate and robust detection of multi-class objects in optical remote sensing images is essential to many real-world applications such as urban planning, traffic control, searching and rescuing, etc. However, state-of-the-art object detection techniques designed for images captured using ground-level sensors usually experience a sharp performance drop when directly applied to remote sensing images, largely due to the object appearance differences in remote sensing images in term of sparse texture, low contrast, arbitrary orientations, large scale variations, etc. This paper presents a novel object detection network (CAD-Net) that exploits attention-modulated features as well as global and local contexts to address the new challenges in detecting objects from remote sensing images. The proposed CAD-Net learns global and local contexts of objects by capturing their correlations with the global scene (at scene-level) and the local neighboring objects or features (at object-level), respectively. In addition, it designs a spatial-and-scale-aware attention module that guides the network to focus on more informative regions and features as well as more appropriate feature scales. Experiments over two publicly available object detection datasets for remote sensing images demonstrate that the proposed CAD-Net achieves superior detection performance. The implementation codes will be made publicly available for facilitating future researches
    • …
    corecore