17,215 research outputs found

    An asymmetric inhibition model of hemispheric differences in emotional processing

    Get PDF
    Two relatively independent lines of research have addressed the role of the prefrontal cortex in emotional processing. The first examines hemispheric asymmetries in frontal function; the second focuses on prefrontal interactions between cognition and emotion. We briefly review each perspective and highlight inconsistencies between them. We go on to describe an alternative model that integrates approaches by focusing on hemispheric asymmetry in inhibitory executive control processes. The Asymmetric Inhibition Model proposes that right lateralized executive control inhibits processing of positive or approach-related distractors, and left-lateralized control inhibits negative or withdrawal-related distractors. These complementary processes allow us to maintain and achieve current goals in the face of emotional distraction. We conclude with a research agenda that uses the model to generate novel experiments that will advance our understanding of both hemispheric asymmetries and cognition-emotion interactions

    Integration of psychological models in the design of artificial creatures

    Get PDF
    Artificial creatures form an increasingly important component of interactive computer games. Examples of such creatures exist which can interact with each other and the game player and learn from their experiences. However, we argue, the design of the underlying architecture and algorithms has to a large extent overlooked knowledge from psychology and cognitive sciences. We explore the integration of observations from studies of motivational systems and emotional behaviour into the design of artificial creatures. An initial implementation of our ideas using the “sim agent” toolkit illustrates that physiological models can be used as the basis for creatures with animal like behaviour attributes. The current aim of this research is to increase the “realism” of artificial creatures in interactive game-play, but it may have wider implications for the development of AI

    Meditation Experiences, Self, and Boundaries of Consciousness

    Get PDF
    Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses “super-impose” on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the “the body’s internal 3D default space”. We provide examples from meditation experiences to help explain how the sense of ‘self’ can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner ‘self’. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment

    Similarities and differences of functional connectivity in drug-naïve, first-episode adolescent and young adult with major depressive disorder and schizophrenia

    Get PDF
    Major depressive disorder (MDD) and schizophrenia (SZ) are considered two distinct psychiatric disorders. Yet, they have considerable overlap in symptomatology and clinical features, particularly in the initial phases of illness. The amygdala and prefrontal cortex (PFC) appear to have critical roles in these disorders; however, abnormalities appear to manifest differently. In our study forty-nine drug-naïve, first-episode MDD, 45 drug-naïve, first-episode SZ, and 50 healthy control (HC) participants from 13 to 30 years old underwent resting-state functional magnetic resonance imaging. Functional connectivity (FC) between the amygdala and PFC was compared among the three groups. Significant differences in FC were observed between the amygdala and ventral PFC (VPFC), dorsolateral PFC (DLPFC), and dorsal anterior cingulated cortex (dACC) among the three groups. Further analyses demonstrated that MDD showed decreased amygdala-VPFC FC and SZ had reductions in amygdala-dACC FC. Both the diagnostic groups had significantly decreased amygdala-DLPFC FC. These indicate abnormalities in amygdala-PFC FC and further support the importance of the interaction between the amygdala and PFC in adolescents and young adults with these disorders. Additionally, the alterations in amygdala-PFC FC may underlie the initial similarities observed between MDD and SZ and suggest potential markers of differentiation between the disorders at first onset
    corecore