2,540 research outputs found

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    An fMRI study of parietal cortex involvement in the visual guidance of locomotion

    Get PDF
    Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved

    Seeing the invisible: The scope and limits of unconscious processing in binocular rivalry

    Get PDF
    When an image is presented to one eye and a very different image is presented to the corresponding location of the other eye, they compete for conscious representation, such that only one image is visible at a time while the other is suppressed. Called binocular rivalry, this phenomenon and its deviants have been extensively exploited to study the mechanism and neural correlates of consciousness. In this paper, we propose a framework, the unconscious binding hypothesis, to distinguish unconscious processing from conscious processing. According to this framework, the unconscious mind not only encodes individual features but also temporally binds distributed features to give rise to cortical representation, but unlike conscious binding, such unconscious binding is fragile. Under this framework, we review evidence from psychophysical and neuroimaging studies, which suggests that: (1) for invisible low level features, prolonged exposure to visual pattern and simple translational motion can alter the appearance of subsequent visible features (i.e. adaptation); for invisible high level features, although complex spiral motion cannot produce adaptation, nor can objects/words enhance subsequent processing of related stimuli (i.e. priming), images of tools can nevertheless activate the dorsal pathway; and (2) although invisible central cues cannot orient attention, invisible erotic pictures in the periphery can nevertheless guide attention, likely through emotional arousal; reciprocally, the processing of invisible information can be modulated by attention at perceptual and neural levels

    The attentional blink modulates activity in the early visual cortex

    Full text link
    The attentional blink (AB) documents a particularly strong case of visual attentional competition, in which subjects' ability to identify a second target (T2) is significantly impaired when it is presented with a short SOA after a first target (T1). We used functional magnetic resonance imaging to investigate the impact of the AB on visual activity in individually defined retinotopic representations of the target stimuli. Our results show reduction of neural response in V3 and marginally in V2 and V1, paralleling the behavioral AB effect. Reduction of visual activity was accompanied by reduced neural response in the inferior parietal cortex. This indicates that attentional competition modulates activity in higher-order parietal regions and the early visual cortex, providing a plausible neural basis of the behavioral AB effect

    Decoding the functional relevance of intrinsic brain activity with (TMS-)EEG

    Get PDF

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Intermediate Level Mechanisms Supporting Face Perception

    Get PDF
    I propose that the intermediate neural mechanisms involved in face processing may be better understood by studying concentric form-from-structure integration. This dissertation involves behavioral adaptation and masking experiments that provide evidence regarding whether face perception and concentric form-from-structure perception engage a common processing mechanism. Despite faces being complex visual stimuli, humans are able to perceive and identify faces rapidly. Studies of face perception strongly suggest that this ability involves processing the arrangement of the face features. Although high-level aspects of face perception have been studied extensively, less is known about the intermediate mechanisms involved in face processing. Converging evidence has shown that concentric form-from-structure perception involves processing the arrangement of the features and that face-sensitive mid- and high-level visual regions may be involved. I used visual adaptation and visual masking experiments to test this hypothesis. My data show that masking with, but not adaptation to, concentric form-from-structure stimuli impairs face discrimination. The results of this thesis provide evidence that concentric form-from-structure and face perception may share a common processing mechanism

    An exploration of pre-attentive visual discrimination using event-related potentials

    Get PDF
    The Mismatch Negativity (MMN) has been characterised as a ‘pre-attentive’ component of an Event-Related Potential (ERP) that is related to discriminatory processes. Although well established in the auditory domain, characteristics of the MMN are less well characterised in the visual domain. The five main studies presented in this thesis examine visual cortical processing using event-related potentials. Novel methodologies have been used to elicit visual detection and discrimination components in the absence of a behavioural task. Developing paradigms in which a behavioural task is not required may have important clinical applications for populations, such as young children, who cannot comply with the demands of an active task. The ‘pre-attentive’ nature of visual MMN has been investigated by modulating attention. Generators and hemispheric lateralisation of visual MMN have been investigated by using pertinent clinical groups. A three stimulus visual oddball paradigm was used to explore the elicitation of visual discrimination components to a change in the orientation of stimuli in the absence of a behavioural task. Monochrome stimuli based on pacman figures were employed that differed from each other only in terms of the orientation of their elements. One such stimulus formed an illusory figure in order to capture the participant’s attention, either in place of, or alongside, a behavioural task. The elicitation of a P3a to the illusory figure but not to the standard or deviant stimuli provided evidence that the illusory figure captured attention. A visual MMN response was recorded in a paradigm with no task demands. When a behavioural task was incorporated into the paradigm, a P3b component was elicited consistent with the allocation of attentional resources to the task. However, visual discrimination components were attenuated revealing that the illusory figure was unable to command all attentional resources from the standard deviant transition. The results are the first to suggest that the visual MMN is modulated by attention. Using the same three stimulus oddball paradigm, generators of visual MMN were investigated by recording potentials directly from the cortex of an adolescent undergoing pre-surgical evaluation for resection of a right anterior parietal lesion. To date no other study has explicitly recorded activity related to the visual MMN intracranially using an oddball paradigm in the absence of a behavioural task. Results indicated that visual N1 and visual MMN could be temporally and spatially separated, with visual MMN being recorded more anteriorly than N1. The characteristic abnormality in retinal projections in albinism afforded the opportunity to investigate each hemisphere in relative isolation and was used, for the first time, as a model to investigate lateralisation of visual MMN and illusory contour processing. Using the three stimulus oddball paradigm, no visual MMN was elicited in this group, and so no conclusions regarding the lateralisation of visual MMN could be made. Results suggested that both hemispheres were equally capable of processing an illusory figure. As a method of presenting visual test stimuli without conscious perception, a continuous visual stream paradigm was developed that used a briefly presented checkerboard stimulus combined with masking for exploring stimulus detection below and above subjective levels of perception. A correlate of very early cortical processing at a latency of 60-80 ms (CI) was elicited whether stimuli were reported as seen or unseen. Differences in visual processing were only evident at a latency of 90 ms (CII) implying that this component may represent a correlate of visual consciousness/awareness. Finally, an oddball sequence was introduced into the visual stream masking paradigm to investigate whether visual MMN responses could be recorded without conscious perception. The stimuli comprised of black and white checkerboard elements differing only in terms of their orientation to form an x or a +. Visual MMN was not recorded when participants were unable to report seeing the stimulus. Results therefore suggest that behavioural identification of the stimuli was required for the elicitation of visual MMN and that visual MMN may require some attentional resources. On the basis of these studies it is concluded that visual MMN is not entirely independent of attention. Further, the combination of clinical and non-clinical investigations provides a unique opportunity to study the characterisation and localisation of putative mechanisms related to conscious and non-conscious visual processing

    Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions

    Get PDF
    The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness
    • 

    corecore