9,113 research outputs found

    The Mechanisms of Proactive Interference and Their Relationship with Working Memory

    Get PDF
    Working memory (WM) capacity – the capacity to maintain and manipulate information in mind – plays an essential role in high-level cognitive functions. An important determinant of WM capacity is the ability to resolve interference of previously encoded but no longer relevant information (proactive interference: PI). Four different mechanisms of PI resolution involving binding and inhibition have been proposed in the literature, although debate continues regarding their role. Braver et al. (2007) introduced an important distinction in the PI resolution literature, proposing two general types of PI control mechanisms that occur at different time points: proactive control (involves preparation in advance of the interference) and reactive control (occurs after interference occurs). This thesis proposed that among these four functions involving binding and inhibition, item inhibition and binding could be involved in proactive control, while familiarity inhibition and episodic inhibition could be involved in reactive control. The question is which mechanism in each pair is indeed involved in proactive control and reactive control respectively, and how these proactive control and reactive control mechanisms work together to resolve PI. In addition, do these mechanisms play a role in the relationship between PI resolution and WM? In an individual differences study, individuals’ ability to resolve PI was assessed in memory tasks, with two versions of each that encouraged the use of either proactive or reactive control. In addition, measures were obtained of individuals’ ability of binding and inhibition in tasks that had minimal memory demands. Regression analyses showed contributions of binding and inhibition to PI resolution and WM. Moreover, these functions are responsible for the correlation between PI resolution and WM. In a neuroimaging study, the neural basis of proactive control was examined by comparing two memory tasks that differed in their demand on binding and inhibition. In addition, the brain regions engaged in reactive control was examined by contrasting trials involving interference or not. The thesis showed that item inhibition carried out by the left inferior frontal cortex (IFC) is involved in proactive control while episodic inhibition carried out by the left IFC and the posterior parietal cortex is involved in reactive control

    Within-trial effects of stimulus-reward associations

    Get PDF
    While a globally energizing influence of motivation has long been appreciated in psychological research, a series of more recent studies has described motivational influences on specific cognitive operations ranging from visual attention, to cognitive control, to memory formation. In the majority of these studies, a cue predicts the potential to win money in a subsequent task, thus allowing for modulations of proactive task preparation. Here we describe some recent studies using tasks that communicate reward availability without such cues by directly associating specific task features with reward. Despite abolishing the cue-based preparation phase, these studies show similar performance benefits. Given the clear difference in temporal structure, a central question is how these behavioral effects are brought about, and in particular whether control processes can rapidly be enhanced reactively. We present some evidence in favor of this notion. Although additional influences, for example sensory prioritization of reward-related features, could contribute to the reward-related performance benefits, those benefits seem to strongly rely on enhancements of control processes during task execution. Still, for a better mechanistic understanding of reward benefits in these two principal paradigms (cues vs. no cues), more work is needed that directly compares the underlying processes. We anticipate that reward benefits can be brought about in a very flexible fashion depending on the exact nature of the reward manipulation and task, and that a better understanding of these processes will not only be relevant for basic motivation research, but that it can also be valuable for educational and psychopathological contexts

    Abnormal proactive and reactive cognitive control during conflict processing in major depression

    Get PDF
    According to the Dual Mechanisms of Control framework, cognitive control consists of two complementary components: proactive control refers to anticipatory maintenance of goal-relevant information, whereas reactive control acts as a correction mechanism that is activated when a conflict occurs. Possibly, the well-known diminished inhibitory control in response to negative stimuli in Major Depressive Disorder (MDD) patients stems from a breakdown in proactive control, and/or anomalies in reactive cognitive control. In our study, MDD patients specifically showed increased response latencies when actively inhibiting a dominant response to a sad compared with a happy face. This condition was associated with a longer duration of a dominant ERP topography (800-900 ms poststimulus onset) and a stronger activity in the bilateral dorsal anterior cingulate cortex, reflecting abnormal reactive control when inhibiting attention to a negative stimulus. Moreover, MDD patients showed abnormalities in proactive cognitive control when preparing for the upcoming imperative stimulus (abnormal modulation of the contingent negative variation component), accompanied by more activity in brain regions belonging to the default mode network. All together, deficits to inhibit attention to negative information in MDD might originate from an abnormal use of both proactive resources and reactive control processes. This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly

    Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations

    Get PDF
    In the previous 15 years, a variety of experimental paradigms and methods have been employed to study inhibition. In the current review, we analyze studies that have used the high temporal resolution of the event-related potential (ERP) technique to identify the temporal course of inhibition to understand the various processes that contribute to inhibition. ERP studies with a focus on normal aging are specifically analyzed because they contribute to a deeper understanding of inhibition. Three time windows are proposed to organize the ERP data collected using inhibition paradigms: the 200 ms period following stimulus onset; the period between 200 and 400 ms after stimulus onset; and the period between 400 and 800 ms after stimulus onset. In the first 200 ms, ERP inhibition research has primarily focused on N1 and P1 as the ERP components associated with inhibition. The inhibitory processing in the second time window has been associated with the N2 and P3 ERP components. Finally, in the third time window, inhibition has primarily been associated with the N400 and N450 ERP components. Source localization studies are analyzed to examine the association between the inhibition processes that are indexed by the ERP components and their functional brain areas. Inhibition can be organized in a complex functional structure that is not constrained to a specific time point but, rather, extends its activity through different time windows. This review characterizes inhibition as a set of processes rather than a unitary process

    How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training

    Get PDF
    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning

    The heterogeneous world of congruency sequence effects: an update

    Get PDF
    Congruency sequence effects (CSEs) refer to the observation that congruency effects in conflict tasks are typically smaller following incongruent compared to following congruent trials. This measure has long been thought to provide a unique window into top-down attentional adjustments and their underlying brain mechanisms. According to the renowned conflict monitoring theory, CSEs reflect enhanced selective attention following conflict detection. Still, alternative accounts suggested that bottom-up associative learning suffices to explain the pattern of reaction times and error rates. A couple of years ago, a review by Egner (2007) pitted these two rivalry accounts against each other, concluding that both conflict adaptation and feature integration contribute to the CSE. Since then, a wealth of studies has further debated this issue, and two additional accounts have been proposed, offering intriguing alternative explanations. Contingency learning accounts put forward that predictive relationships between stimuli and responses drive the CSE, whereas the repetition expectancy hypothesis suggests that top-down, expectancy-driven control adjustments affect the CSE. In the present paper, we build further on the previous review (Egner, 2007) by summarizing and integrating recent behavioral and neurophysiological studies on the CSE. In doing so, we evaluate the relative contribution and theoretical value of the different attentional and memory-based accounts. Moreover, we review how all of these influences can be experimentally isolated, and discuss designs and procedures that can critically judge between them

    Behavioral and electrophysiological correlates of cognitive control in ex-obese adults

    Get PDF
    Impaired cognitive control functions have been documented in obesity. It remains unclear whether these functions normalize after weight reduction. We compared ex-obese individuals, who successfully underwent substantial weight loss after bariatric surgery, to normal weight participants on measures of resistance to interference, cognitive flexibility and response inhibition, obtained from the completion of two Stroop tasks, a Switching task and a Go/NoGo task, respectively. To elucidate the underlying brain mechanisms, event-related potentials (ERPs) in the latter two tasks were examined. As compared to controls, patients were more susceptible to the predominant but task-irrelevant stimulus dimension (i.e., they showed a larger verbal Stroop effect), and were slower in responding on trials requiring a task-set change rather than a task-set repetition (i.e., they showed a larger switch cost). The ERP correlates revealed altered anticipatory control mechanisms (switch positivity) and an exaggerated conflict monitoring response (N2). The results suggest that cognitive control is critical even in ex-obese individuals and should be monitored to promote weight loss maintenance

    The effect of stimulus range on two-interval frequency discrimination

    Get PDF
    It has traditionally been thought that performance in two-interval frequency discrimination tasks decreases as the range over which the standard tone varies is increased. Recent empirical evidence and a reexamination of previous results suggest that this may not be the case. The present experiment found that performance was significantly better when the standard roved over a wide range (1500 Hz) than a narrow range (30 Hz). This pattern cannot readily be accommodated by traditional models of frequency discrimination based on memory or attention, but may be explicable in terms of neural plasticity and the formation of perceptual anchors
    • …
    corecore