218,770 research outputs found

    Neural Information Processing: between synchrony and chaos

    Get PDF
    The brain is characterized by performing many different processing tasks ranging from elaborate processes such as pattern recognition, memory or decision-making to more simple functionalities such as linear filtering in image processing. Understanding the mechanisms by which the brain is able to produce such a different range of cortical operations remains a fundamental problem in neuroscience. Some recent empirical and theoretical results support the notion that the brain is naturally poised between ordered and chaotic states. As the largest number of metastable states exists at a point near the transition, the brain therefore has access to a larger repertoire of behaviours. Consequently, it is of high interest to know which type of processing can be associated with both ordered and disordered states. Here we show an explanation of which processes are related to chaotic and synchronized states based on the study of in-silico implementation of biologically plausible neural systems. The measurements obtained reveal that synchronized cells (that can be understood as ordered states of the brain) are related to non-linear computations, while uncorrelated neural ensembles are excellent information transmission systems that are able to implement linear transformations (as the realization of convolution products) and to parallelize neural processes. From these results we propose a plausible meaning for Hebbian and non-Hebbian learning rules as those biophysical mechanisms by which the brain creates ordered or chaotic ensembles depending on the desired functionality. The measurements that we obtain from the hardware implementation of different neural systems endorse the fact that the brain is working with two different states, ordered and chaotic, with complementary functionalities that imply non-linear processing (synchronized states) and information transmission and convolution (chaotic states)

    Fluctuations in instantaneous frequency predict alpha amplitude during visual perception.

    Get PDF
    Rhythmic neural activity in the alpha band (8-13 Hz) is thought to have an important role in the selective processing of visual information. Typically, modulations in alpha amplitude and instantaneous frequency are thought to reflect independent mechanisms impacting dissociable aspects of visual information processing. However, in complex systems with interacting oscillators such as the brain, amplitude and frequency are mathematically dependent. Here, we record electroencephalography in human subjects and show that both alpha amplitude and instantaneous frequency predict behavioral performance in the same visual discrimination task. Consistent with a model of coupled oscillators, we show that fluctuations in instantaneous frequency predict alpha amplitude on a single trial basis, empirically demonstrating that these metrics are not independent. This interdependence suggests that changes in amplitude and instantaneous frequency reflect a common change in the excitatory and inhibitory neural activity that regulates alpha oscillations and visual information processing

    COCAINE-BASED SIGNALING CHANGES IN THE NUCLEUS ACCUMBENS, LATERAL HABENULA, AND THALAMUS

    Get PDF
    The brain is an extraordinarily complex and organized system. Environmental information reaches the brain via the sensory systems, and this information is processed to interpret and make sense of the world. The mechanisms used to transmit information between neurons are also involved in directing and modifying the strength of these connections. Thus, the brain is always in a plastic state and has the ability to both interpret neural information and be shaped by it. Cocaine addiction is a progressive condition highlighted by maladaptive and compulsive behavior that develops after exposure to cocaine. Thus, cocaine exposure changes neural processing in the brain in ways that lead to the addicted state. The work presented here examines how neural circuits in addiction-related brain regions, such as those involved in motivated behavior and translating emotion into action, change at the cellular and molecular levels in response to cocaine exposure. The results uncover a variety of novel cocaine-induced changes in neural circuitry and processing which likely contribute to the development and/or maintenance of addiction

    Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.

    Get PDF
    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition

    Convergence of Action, Reaction, and Perception via Neural Oscillations in Dynamic Interaction with External Surroundings

    Get PDF
    There has been a considerable interest in the role of time-dimension in functions of the brain, which has been limited to time perception and timing of behavior. However, during past few years it has become increasingly clear that the role of the time-dimension includes other complex cognitive functions, such as motor control of a vehicle, sensory perception and processing imageries to name a few. Role of the accurate representation of time-dimension is important for several neural mechanisms, which include temporal coupling, coincidence detection, and processing of Shannon information. These mechanisms play key roles in processing information during the interaction of the brain with the physical surroundings

    Simulation of Neural Behavior

    Get PDF
    The brain is an organ that takes the central role in advanced information processing. There exist great many neurons in our brain, which build complicated neural networks. All information processing in the brain is accomplished by neural activity in the form of neural oscillations. In order to understand the mechanisms of information processing, it is necessary to clarify functions of neurons and neural networks. Although the current progress of experiment technology is remarkable, only experiments by themselves cannot uncover the behavior of only a single neuron. Computational neuroscience is a research field, which fills up the deficiency in experiments. By modeling the essential features of a neuron or a neural network, we can analyze their fundamental properties by computer simulation. In this chapter, one aspect of computational neuroscience is described. At the first, the cell membrane and a neuron can be modeled by using an RC circuit. Next, the Hodgkin-Huxley model is introduced, which has the function of generation of action potentials. Furthermore, many neurons show the subthreshold resonance phenomena, and the cell membrane is necessary to be modeled by an RLC circuit. Finally, some simulation results are shown, and properties of such neuronal behaviors are discussed

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Gamma oscillations as integrators of local competition for activity and global competition for coherence

    Get PDF
    Poster presentation: Introduction Rhythmic synchronization of neural activity in the gamma-frequency range (30–100 Hz) was observed in many brain regions; see the review in [1]. The functional relevance of these oscillations remains to be clarified, a task that requires modeling of the relevant aspects of information processing. The temporal correlation hypothesis, reviewed in [2], proposes that the temporal correlation of neural units provides a means to group the neural units into so-called neural assemblies that are supposed to represent mental objects. Here, we approach the modeling of the temporal grouping of neural units from the perspective of oscillatory neural network systems based on phase model oscillators. Patterns are assumed to be stored in the network based on Hebbian memory and assemblies are identified with phase-locked subset of these patterns. Going beyond foregoing discussions, we demonstrate the combination of two recently discussed mechanisms, referred to as "acceleration" [3] and "pooling" [4]. The combination realizes in a complementary manner a competition for activity on a local scale, while providing a competition for coherence among different assemblies on a non-local scale. ..
    corecore