3,370 research outputs found

    Effect of Gait Imagery Tasks on Lower Limb Muscle Activity With Respect to Body Posture

    Get PDF
    The objective of this study was to evaluate the effect of gait imagery tasks on lowerlimb muscle activity with respect to body posture. The sitting and standing position and lower limb muscle activity were evaluated in 27 healthy female students (24.4±1.3 years, 167.2±5.2 cm, 60.10±6.4 kg). Surface electromyography was assessed during rest and in three different experimental conditions using mental imagery. These included a rhythmic gait, rhythmic gait simultaneously with observation of a model, and rhythmic gait after performing rhythmic gait. The normalized root mean square EMG values with respect to corresponding rest position were compared using non-parametric statistics. Standing gait imagery tasks had facilitatory effect on proximal lower limb muscle activity. However, electromyography activity of distal leg muscles decreased for all gait imagery tasks in the sitting position, when the proprioceptive feedback was less appropriate. For subsequent gait motor imagery tasks, the muscle activity decreased, probably as result of habituation. In conclusion, the effect of motor imagery on muscle activity appears to depend on relative strength of facilitatory and inhibitory inputs

    Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders

    Get PDF
    The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies

    Motor imagery training improves precision of an upper limb movement in patients with hemiparesis

    Get PDF
    BACKGROUND: In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits.OBJECTIVE: To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution.METHODS: Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. RESULTS: Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training.CONCLUSIONS: The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice

    Clinical Application of Motor Imagery Training

    Get PDF
    Motor imagery training is applied to a rehabilitation program based on previous studies regarding neuroscience and behavioral science. Motor imagery training is useful because it can be applied to almost all patients in clinical settings. However, because motor imagery training has some shortcoming, clinicians need to consider its shortcoming. The objective of this chapter is to promote understanding about using motor imagery effectively

    Biomechanical and Neural Factors Associated with Gait Dysfunction and Freezing in People with Parkinson Disease

    Get PDF
    Parkinson disease: PD) is a progressive neurological disorder with no known cure, affecting one million Americans. Half of those with PD experience freezing of gait: FOG), manifested as an inability to complete effective stepping. Gait dysfunction and FOG are associated with falls, severe injury, and reduced quality of life, and are among the most disabling and distressing symptoms of PD. The causes of FOG and gait dysfunction are not well understood. Further, FOG is notoriously difficult to elicit in a laboratory setting, making efforts to track or identify individuals at risk for freezing difficult. An important first step in determining the mechanism of gait dysfunction and FOG is to identify factors associated with these symptoms. Therefore, the overall goal of this project was to better understand how pathologies of movement and brain function are associated with gait dysfunction and FOG. To this end we conducted three experiments: chapters 2-4). In experiment 1: chapter 2), we assessed the relationship between coordination of steps and freezing of gait. Results suggested that individuals with PD who freeze exhibit worse coordination than those who do not freeze, and further, that tasks related to freezing: turning and backward walking) resulted in worse coordination than forward walking. Finally, there was a significant positive correlation between freezing severity and global coordination of steps. These results together support the hypothesized relationship between coordination of steps and freezing. In experiment 2: chapter 3), we investigated neural signals associated with gait dysfunction: measured via blood oxygen level dependent [BOLD] signal) in those with PD compared to healthy adults. We found that during complex gait tasks, those with PD activated the supplementary motor area more than healthy adults. In addition, we observed reduced activity in the globus pallidus in people with PD. Finally, PD exhibited consistent positive correlations between a measure of gait function: overground walking velocity) and brain activation such that those with higher brain activity exhibited better gait function. In experiment 3: chapter 4), we investigated the neural underpinnings of freezing of gait. Specifically, we looked at gait imagery in those with PD who do experience freezing: freezers) and those who do not: non-freezers). We found those who experience freezing exhibited reduced BOLD signal in the cerebellar locomotor region, suggesting dysfunctional activity in this region may play a role in freezing. BOLD response within freezer and non-freezer groups were not consistently correlated to functional gait measures such as overground gait speed or freezing severity. Together these results better elucidate how pathologies of movement: i.e. coordination of steps) and neural function are related to gait dysfunction and freezing. Specifically, we found that coordination of steps and activity of the cerebellar locomotor regions may be related to freezing. Further, altered activation of the globus pallidus may be related to gait dysfunction in those with PD, and generally, larger BOLD response is correlated to improved overground gait function

    Finding rhythm through auditory imagery: an approach to Parkinson’s Disease treatment

    Get PDF
    The following research article explores music therapy in the treatment of Parkinson’s Disease (PD). The general interaction between the rhythmic properties of music and motor associated brain areas is discussed at length. These interactions provide a basis for understanding how music therapy can address the rhythmic impairments of the disease. Dance therapy, Musical Sonification, Rhythmic Auditory Stimulation (RAS) are three types of music-based therapies that have been found to be effective in treating the motor symptoms of PD. These therapies may be particularly effective for the PD population because they draw upon musical rhythm as an external pacing cue.While external pacing cues have been found to help PD patients entrain to rhythm, research has not yet explored how rhythm can be internalized over time. The current article proposes that the experience of Involuntary Musical Imagery (INMI) may offer patients a means of creating an internalized representation of rhythm that can be maintained beyond the therapeutic setting. Strategies to increase the occurrence of INMI are explored, accounting for individual differences and certain musical characteristics. In addition to advocating for music-based therapies in the treatment of PD, there also calls for increased research on how INMI may be incorporated into these therapies

    The efficacy of imagery in the rehabilitation of people with Parkinson's disease : protocol for a systematic review and meta-analysis

    Get PDF
    Background: Parkinson’s disease (PD) is a neurodegenerative disorder of the nervous system that affects movement. Individuals with PD commonly experience difficulty initiating movements, slowness of movements, decreased balance, and decreased standing ability. It has been shown that these motor symptoms adversely affect the independence of individuals with PD. Imagery is the cognitive process whereby a motor action is internally reproduced and repeated without overt physical movement. Recent studies support the use of imagery in improving rehabilitation outcomes in the PD population. However, these data have inconsistencies and have not yet been synthesised. The study will review the evidence on the use of imagery in individuals with PD and to determine its efficacy in improving rehabilitation outcomes. Methods: Randomised controlled clinical trials comparing the effects of imagery and control on activities, body structure and function, and participation outcomes for people with PD will be included. A detailed computer-aided search of the literature will be performed from inception to June 2021 in the following databases: MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Library, Web of Science, and Scopus. Two independent reviewers will screen articles for relevance and methodological validity. The Physiotherapy Evidence Database (PEDro) scale will be utilised to evaluate the risk of bias of selected studies. Data from included studies will be extracted by two independent reviewers through a customised, pre-set data extraction sheet. Studies using imagery with comparable outcome measures will be pooled for meta-analysis using the random effect model with 95% CI. If individual studies are heterogeneous, a descriptive review will analyse variance in interventions and outcomes. A narrative data analysis will be considered where there is insufficient data to perform a meta-analysis. Discussion: Several studies investigating imagery in the PD population have drawn dissimilar conclusions regarding its effectiveness in rehabilitation outcomes and clinical applicability. Therefore, this systematic review will gather and critically appraise all relevant data, to generate a conclusion and recommendations to guide both clinical practice and future research on using imagery in the rehabilitation of people with PD. Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors

    Investigating the Effects of Custom Made Orthotics on Brain Forms: A Pilot Study

    Get PDF
    OBJECTIVES: To determine (1) the feasibility of this novel approach and technique of recording brain activity, wirelessly and continuously, during human gait, and (2) if custom made orthotics will alter the brain activity patterns recorded. METHODS: Gait trials were performed on 16 participants walking with and without orthotic devices in their shoes while simultaneously collecting EEG data through the Emotiv wireless neuroheadset. RESULTS: The Emotiv neuroheadset was capable of detecting changes in brain activity between the two gait trials. The differences in brain activity identified between conditions were not statistically significant. CONCLUSION: The findings suggest the Emotiv EEG device is sensitive enough to detect changes in brain activation patterns during human gait. Further research is required before definite conclusions can be made about this novel device, or about what effects, if any, orthotics have on brain activation patterns during gait
    • …
    corecore