2,831 research outputs found

    Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    Get PDF
    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex

    EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks

    Get PDF
    In order to build a reliable index to monitor the depth of anesthesia (DOA), many algorithms have been proposed in recent years, one of which is sample entropy (SampEn), a commonly used and important tool to measure the regularity of data series. However, SampEn only estimates the complexity of signals on one time scale. In this study, a new approach is introduced using multiscale entropy (MSE) considering the structure information over different time scales. The entropy values over different time scales calculated through MSE are applied as the input data to train an artificial neural network (ANN) model using bispectral index (BIS) or expert assessment of conscious level (EACL) as the target. To test the performance of the new index's sensitivity to artifacts, we compared the results before and after filtration by multivariate empirical mode decomposition (MEMD). The new approach via ANN is utilized in real EEG signals collected from 26 patients before and after filtering by MEMD, respectively; the results show that is a higher correlation between index from the proposed approach and the gold standard compared with SampEn. Moreover, the proposed approach is more structurally robust to noise and artifacts which indicates that it can be used for monitoring the DOA more accurately.This research was financially supported by the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it was supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302) and National Natural Science Foundation of China (Grant no. 51475342)

    Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Get PDF
    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.National Institutes of Health (U.S.) (Award DP1-OD003646)National Institutes of Health (U.S.) (Award DP2-OD006454)National Institutes of Health (U.S.) (Award K08-GM094394)Burroughs Wellcome Fund (Award 1010625

    Nerve localization techniques for peripheral nerve block and possible future directions

    Get PDF
    Ultrasound guidance is now a standard nerve localization technique for peripheral nerve block (PNB). Ultrasonography allows simultaneous visualization of the target nerve, needle, local anesthetic injectate and surrounding anatomical structures. Accurate deposition of local anesthetic next to the nerve is essential to the success of the nerve block procedure. Unfortunately, due to limitations in the visibility of both needle tip and nerve surface, the precise relationship between needle tip and target nerve is unknown at the moment of injection. Importantly, nerve injury may result both from an inappropriately placed needle tip and inappropriately placed local anesthetic. The relationship between the block needle tip and target nerve is of paramount importance to the safe conduct of peripheral nerve block. This review summarizes the evolution of nerve localization in regional anesthesia, characterizes a problem faced by clinicians in performing ultrasound guided nerve block and explores the potential technological solutions to this problem

    Preferential Inhibition of Frontal-to-Parietal Feedback Connectivity Is a Neurophysiologic Correlate of General Anesthesia in Surgical Patients

    Get PDF
    BACKGROUND: The precise mechanism and optimal measure of anesthetic-induced unconsciousness has yet to be elucidated. Preferential inhibition of feedback connectivity from frontal to parietal brain networks is one potential neurophysiologic correlate, but has only been demonstrated in animals or under limited conditions in healthy volunteers. METHODS AND FINDINGS: We recruited eighteen patients presenting for surgery under general anesthesia; electroencephalography of the frontal and parietal regions was acquired during (i) baseline consciousness, (ii) anesthetic induction with propofol or sevoflurane, (iii) general anesthesia, (iv) recovery of consciousness, and (v) post-recovery states. We used two measures of effective connectivity, evolutional map approach and symbolic transfer entropy, to analyze causal interactions of the frontal and parietal regions. The dominant feedback connectivity of the baseline conscious state was inhibited after anesthetic induction and during general anesthesia, resulting in reduced asymmetry of feedback and feedforward connections in the frontoparietal network. Dominant feedback connectivity returned when patients recovered from anesthesia. Both analytic techniques and both classes of anesthetics demonstrated similar results in this heterogeneous population of surgical patients. CONCLUSIONS: The disruption of dominant feedback connectivity in the frontoparietal network is a common neurophysiologic correlate of general anesthesia across two anesthetic classes and two analytic measures. This study represents a key translational step from the underlying cognitive neuroscience of consciousness to more sophisticated monitoring of anesthetic effects in human surgical patients
    corecore