6,392 research outputs found

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    Cortical topography of intracortical inhibition influences the speed of decision making

    Get PDF
    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes

    Neurocircuitry and Molecular Basis of Conditioned Defeat in Male Syrian Hamsters

    Get PDF
    Stress affects virtually all organisms and can result in both physiological and behavioral changes. Conditioned defeat in Syrian hamsters is a model of stress-induced behavioral plasticity that occurs in a social context. In this model, hamsters are defeated by a larger, more aggressive counterpart. Defeated hamsters subsequently fail to defend their own territory and show striking and long-lasting increases in submissive behavior even when paired with a non-threatening counterpart. The present series of experiments seeks to identify the brain regions and molecular mediators that contribute to this behavioral plasticity. One brain region that has been overlooked by our laboratory is the hippocampus. The results of the first study suggested that the ventral, but not dorsal, hippocampus is important for the acquisition of conditioned defeat as temporary inactivation of the ventral hippocampus prior to defeat training significantly reduced submissive and defensive behaviors when hamsters were tested with a non-aggressive intruder. Next, we sought to identify a potential molecular mediator of social stress-induced behavioral plasticity in hamsters identified as winners or losers after a fight. Using in situ hybridization for brain-derived neurotrophic factor (BDNF) mRNA, we showed that winning and losing hamsters exhibited differences in BDNF mRNA in several regions including the basolateral and medial amygdala as well as the dentate gyrus of the dorsal hippocampus and CA1 of the ventral hippocampus. We next showed that neurotrophic activity in the basolateral amygdala is important for the acquisition of conditioned defeat because K252a infused into the basolateral amygdala prior to defeat training by an aggressive counterpart, significantly decreased submissive and defensive behavior during subsequent testing. Finally, existing data suggest that the amygdala and hippocampus interact to modulate the formation of emotional memories. To test the hypothesis that the basolateral amygdala and ventral hippocampus interact to mediate the behavioral plasticity observed in conditioned defeat, we simultaneously inactivated these regions either contralaterally or ipsilaterally prior to social defeat. Our results suggest that BLA and VHPC interact to mediate the acquisition of conditioned defeat, however, the nature of this interaction remains to be determined

    Pre-reproductive parental enriching experiences influence progeny’s developmental trajectories

    Get PDF
    While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring's phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral trait

    The malleable brain: plasticity of neural circuits and behavior: A review from students to students

    Get PDF
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation (LTP) and long-term depression (LTD) respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by LTP and LTD, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity.Fil: Schaefer, Natascha. University of Wuerzburg; AlemaniaFil: Rotermund, Carola. University of Tuebingen; AlemaniaFil: Blumrich, Eva Maria. Universitat Bremen; AlemaniaFil: Lourenco, Mychael V.. Universidade Federal do Rio de Janeiro; BrasilFil: Joshi, Pooja. Robert Debre Hospital; FranciaFil: Hegemann, Regina U.. University of Otago; Nueva ZelandaFil: Jamwal, Sumit. ISF College of Pharmacy; IndiaFil: Ali, Nilufar. Augusta University; Estados UnidosFil: García Romero, Ezra Michelet. Universidad Veracruzana; MéxicoFil: Sharma, Sorabh. Birla Institute of Technology and Science; IndiaFil: Ghosh, Shampa. Indian Council of Medical Research; IndiaFil: Sinha, Jitendra K.. Indian Council of Medical Research; IndiaFil: Loke, Hannah. Hudson Institute of Medical Research; AustraliaFil: Jain, Vishal. Defence Institute of Physiology and Allied Sciences; IndiaFil: Lepeta, Katarzyna. Polish Academy of Sciences; ArgentinaFil: Salamian, Ahmad. Polish Academy of Sciences; ArgentinaFil: Sharma, Mahima. Polish Academy of Sciences; ArgentinaFil: Golpich, Mojtaba. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Nawrotek, Katarzyna. University Of Lodz; ArgentinaFil: Paid, Ramesh K.. Indian Institute of Chemical Biology; IndiaFil: Shahidzadeh, Sheila M.. Syracuse University; Estados UnidosFil: Piermartiri, Tetsade. Universidade Federal de Santa Catarina; BrasilFil: Amini, Elham. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Pastor, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Wilson, Yvette. University of Melbourne; AustraliaFil: Adeniyi, Philip A.. Afe Babalola University; NigeriaFil: Datusalia, Ashok K.. National Brain Research Centre; IndiaFil: Vafadari, Benham. Polish Academy of Sciences; ArgentinaFil: Saini, Vedangana. University of Nebraska; Estados UnidosFil: Suárez Pozos, Edna. Instituto Politécnico Nacional; MéxicoFil: Kushwah, Neetu. Defence Institute of Physiology and Allied Sciences; IndiaFil: Fontanet, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Turner, Anthony J.. University of Leeds; Reino Unid

    How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction.

    Get PDF
    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.biopsych.2015.01.00

    The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers

    Get PDF
    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling

    Brain Derived Neurotrophic Factor Modulates Behavioral and Brain Responses to Social Stress

    Get PDF
    Social stress is a prevalent factor in society that can cause or exacerbate neuropsychiatric disorders including depression and posttraumatic stress disorder. According to the National Institutes of Health, 6.9% of adults in this country currently suffer from depression, and 4.1% suffer from an anxiety disorder. Unfortunately, current treatments are ineffective in reducing or alleviating symptoms in a majority of these patients. Thus, it is critical to understand how social stress changes in brain and behavior so that we might develop alternative treatments. Brain derived neurotrophic factor (BDNF), which binds to tyrosine kinase B (TrkB) receptors, plays a role in fear learning and in behavioral responses to stress, although we do not currently know whether BDNF promotes or prevents these responses. The purpose of this project was to understand how BDNF alters brain and behavior in response to social stress using a model of social stress in Syrian hamsters, termed conditioned defeat (CD). CD refers to the marked increase in submissive and defensive behavior following social defeat. Specific Aim (SA) 1 tested the hypothesis that BDNF, via TrkB receptors, promotes CD learning. Instead, we found that BDNF and a selective TrkB receptor agonist reduced CD and that a TrkB receptor antagonist enhanced CD. SA 2 tested the hypothesis that the behavioral response observed following systemic administration of TrkB-active drugs is mediated via their action in specific nodes of the neural circuit underlying CD. Unfortunately, the vehicle in which these drugs are dissolved independently activates immediate early gene expression making interpretation of these data impossible. Finally, SA 3 tested the hypothesis that BDNF alters defeat-induced neural activation at least in part by acting in the medial prefrontal cortex (mPFC). We demonstrated that BNDF microinjected into the mPFC site-specifically altered defeat-induced neural activation in the CD neural circuit supporting this hypothesis. Overall, these data suggest that BDNF acts to prevent social stress-induced changes in behavior, at least in part via the basolateral amygdala and the mPFC, and that BDNF-active drugs might be a useful avenue to pursue to discover new treatments for patients that suffer from stress-related neuropsychiatric disorders

    Influence of pre-reproductive maternal enrichment on coping response to stress and expression of c-Fos and glucocorticoid receptors in adolescent offspring

    Get PDF
    Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function
    corecore