8,531 research outputs found

    The supervised hierarchical Dirichlet process

    Full text link
    We propose the supervised hierarchical Dirichlet process (sHDP), a nonparametric generative model for the joint distribution of a group of observations and a response variable directly associated with that whole group. We compare the sHDP with another leading method for regression on grouped data, the supervised latent Dirichlet allocation (sLDA) model. We evaluate our method on two real-world classification problems and two real-world regression problems. Bayesian nonparametric regression models based on the Dirichlet process, such as the Dirichlet process-generalised linear models (DP-GLM) have previously been explored; these models allow flexibility in modelling nonlinear relationships. However, until now, Hierarchical Dirichlet Process (HDP) mixtures have not seen significant use in supervised problems with grouped data since a straightforward application of the HDP on the grouped data results in learnt clusters that are not predictive of the responses. The sHDP solves this problem by allowing for clusters to be learnt jointly from the group structure and from the label assigned to each group.Comment: 14 page

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes

    Get PDF
    Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there is additional information that can assist in prediction. For example, when modeling movie ratings, we might know when the rating occurred, where the user lives, or what actors appear in the movie. It is difficult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the space of side information. The GP priors on these functions require them to vary smoothly and share information. We successfully use this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.Comment: 18 pages, 4 figures, Submitted to UAI 201

    Gibbs Max-margin Topic Models with Data Augmentation

    Full text link
    Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.Comment: 35 page
    • …
    corecore