10,117 research outputs found

    Neural dynamics of error processing in medial frontal cortex.

    Get PDF
    Contains fulltext : 56338.pdf (publisher's version ) (Closed access)Adaptive behavior requires an organism to evaluate the outcome of its actions, such that future behavior can be adjusted accordingly and the appropriate response selected. During associative learning, the time at which such evaluative information is available changes as learning progresses, from the delivery of performance feedback early in learning to the execution of the response itself during learned performance. Here, we report a learning-dependent shift in the timing of activation in the rostral cingulate zone of the anterior cingulate cortex from external error feedback to internal error detection. This pattern of activity is seen only in the anterior cingulate, not in the presupplementary motor area. The dynamics of these reciprocal changes are consistent with the claim that the rostral cingulate zone is involved in response selection on the basis of the expected outcome of an action. Specifically, these data illustrate how the anterior cingulate receives evaluative information, indicating that an action has not produced the desired result

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    The feedback correct-related positivity : sensitivity of the event-related brain potential to unexpected positive feedback

    No full text
    The N200 and the feedback error-related negativity (fERN) are two components of the event-related brain potential (ERP) that share similar scalp distributions, time courses, morphologies, and functional dependencies, which raises the question as to whether they are actually the same phenomenon. To investigate this issue, we recorded the ERP from participants engaged in two tasks that independently elicited the N200 and fERN. Our results indicate that they are, in fact, the same ERP component and further suggest that positive feedback elicits a positive-going deflection in the time range of the fERN. Taken together, these results indicate that negative feedback elicits a common N200 and that modulation of fERN amplitude results from the superposition on correct trials of a positive-going deflection that we term the feedback correct-related positivity

    Early error detection predicted by reduced pre-response control process: an ERP topographic mapping study

    Get PDF
    Advanced ERP topographic mapping techniques were used to study error monitoring functions in human adult participants, and test whether proactive attentional effects during the pre-response time period could later influence early error detection mechanisms (as measured by the ERN component) or not. Participants performed a speeded go/nogo task, and made a substantial number of false alarms that did not differ from correct hits as a function of behavioral speed or actual motor response. While errors clearly elicited an ERN component generated within the dACC following the onset of these incorrect responses, I also found that correct hits were associated with a different sequence of topographic events during the pre-response baseline time-period, relative to errors. A main topographic transition from occipital to posterior parietal regions (including primarily the precuneus) was evidenced for correct hits similar to 170-150 ms before the response, whereas this topographic change was markedly reduced for errors. The same topographic transition was found for correct hits that were eventually performed slower than either errors or fast (correct) hits, confirming the involvement of this distinctive posterior parietal activity in top-down attentional control rather than motor preparation. Control analyses further ensured that this pre-response topographic effect was not related to differences in stimulus processing. Furthermore, I found a reliable association between the magnitude of the ERN following errors and the duration of this differential precuneus activity during the pre-response baseline, suggesting a functional link between an anticipatory attentional control component subserved by the precuneus and early error detection mechanisms within the dACC. These results suggest reciprocal links between proactive attention control and decision making processes during error monitoring

    Interregional synchrony of visuomotor tracking: perturbation effects and individual differences

    Get PDF
    The present study evaluated the neural and behavioural correlates associated with a visuomotor tracking task during which a sensory perturbation was introduced that created a directional bias between moving hand and cursor position. The results revealed that trajectory error increased as a result of the perturbation in conjunction with a dynamic neural reorganization of cluster patterns that reflected distinct processing. In particular, a negatively activated cluster, characterizing the degraded information processing due to the perturbation, involved both hemispheres as well as midline area. Conversely, a positively activated cluster, indicative of compensatory processing was strongly confined to the left (dominant) hemisphere. In addition, a brain-behavioural association of good vs. poor performing participants enabled to localize a neural circuit within the left hemisphere and midline area that linked with successful performance. Overall, these data reinforce the functional significance of interregional synchrony in defining response output and behavioural success

    Dynamic Construction of Stimulus Values in the Ventromedial Prefrontal Cortex

    Get PDF
    Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across three major time windows after stimulus onset: 150–250 ms, 400–550 ms, and 700–800 ms. Exploratory localization of the EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results, functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the choice process, and seem to reflect the integration of incoming information from sensory and memory related regions
    • …
    corecore