56 research outputs found

    Robust Stabilization of a Wheeled Mobile Robot Using Model Predictive Control Based on Neurodynamics Optimization

    Get PDF
    In this paper, a robust model predictive control (MPC) scheme using neural network based optimization has been developed to stabilize a physically constrained mobile robot. By applying a state scaling transformation, the intrinsic controllability of a mobile robots can be regained by incorporation into the control input with an additional exponential decaying term. An MPC based control method is then designed for the robot in the presence of external disturbances. The MPC optimization has been formulated as a convex nonlinear minimization problem and a primal-dual neural network (PDNN) is adopted to solve this optimization problem over a finite receding horizon. The computational efficiency of MPC has been significantly improved by the proposed neuro-dynamic approach. Experimental studies under various dynamic conditions have been performed to demonstrate the performance of the proposed approach, which can be applied for a large range of wheeled mobile robots

    Safety Index Synthesis via Sum-of-Squares Programming

    Full text link
    Control systems often need to satisfy strict safety requirements. Safety index provides a handy way to evaluate the safety level of the system and derive the resulting safe control policies. However, designing safety index functions under control limits is difficult and requires a great amount of expert knowledge. This paper proposes a framework for synthesizing the safety index for general control systems using sum-of-squares programming. Our approach is to show that ensuring the non-emptiness of safe control on the safe set boundary is equivalent to a local manifold positiveness problem. We then prove that this problem is equivalent to sum-of-squares programming via the Positivstellensatz of algebraic geometry. We validate the proposed method on robot arms with different degrees of freedom and ground vehicles. The results show that the synthesized safety index guarantees safety and our method is effective even in high-dimensional robot systems

    Collective Intelligence for Object Manipulation with Mobile Robots

    Full text link
    While natural systems often present collective intelligence that allows them to self-organize and adapt to changes, the equivalent is missing in most artificial systems. We explore the possibility of such a system in the context of cooperative object manipulation using mobile robots. Although conventional works demonstrate potential solutions for the problem in restricted settings, they have computational and learning difficulties. More importantly, these systems do not possess the ability to adapt when facing environmental changes. In this work, we show that by distilling a planner derived from a gradient-based soft-body physics simulator into an attention-based neural network, our multi-robot manipulation system can achieve better performance than baselines. In addition, our system also generalizes to unseen configurations during training and is able to adapt toward task completions when external turbulence and environmental changes are applied

    Model-Based Reinforcement Learning for Stochastic Hybrid Systems

    Full text link
    Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging robotic applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This paper adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical systems with nonlinear boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid systems and optimizes a set of time-invariant local feedback controllers derived from a local polynomial approximation of a global state-value function

    A Reliable Reinforcement Learning for Resource Allocation in Uplink NOMA-URLLC Networks

    Get PDF
    In this paper, we propose a deep state-action-reward-state-action (SARSA) λ learning approach for optimising the uplink resource allocation in non-orthogonal multiple access (NOMA) aided ultra-reliable low-latency communication (URLLC). To reduce the mean decoding error probability in time-varying network environments, this work designs a reliable learning algorithm for providing a long-term resource allocation, where the reward feedback is based on the instantaneous network performance. With the aid of the proposed algorithm, this paper addresses three main challenges of the reliable resource sharing in NOMA-URLLC networks: 1) user clustering; 2) Instantaneous feedback system; and 3) Optimal resource allocation. All of these designs interact with the considered communication environment. Lastly, we compare the performance of the proposed algorithm with conventional Q-learning and SARSA Q-learning algorithms. The simulation outcomes show that: 1) Compared with the traditional Q learning algorithms, the proposed solution is able to converges within 200 episodes for providing as low as 10-2 long-term mean error; 2) NOMA assisted URLLC outperforms traditional OMA systems in terms of decoding error probabilities; and 3) The proposed feedback system is efficient for the long-term learning process

    Optimal filter design for power converters regulated by FCS-MPC in the MEA

    Get PDF
    For the DC electrical power distribution system onboard more electric aircraft, the voltage quality of DC bus is of a great concern since there could be significant harmonics distortions when feeding different power electronics loads. This problem can be potentially addressed by introducing a dc filter to the point-of-load converters regulated by the finite control set model predictive control (FCS-MPC). To optimize this filter, Genetic Algorithm (GA) is utilized for searching the optimal design which guarantees a low mass and low power losses. Different from the conventional filter design methods, the proposed method treats LC as design variables which need to be optimised while ensuring the output power quality. First, relations among variables, operation conditions and constraints are built based on commercial data and circuit simulations. Then, the design and optimization are developed with these relations and a Pareto-front is finally given by GA. After that, the best design is obtained by an index integrating two objectives. Lastly, the design approach is verified by experiment where an FCS-MPC regulated converter was used as a particular example fed by three different LC filters

    Robust recovery of missing data in electricity distribution systems

    Get PDF
    The advanced operation of future electricity distribution systems is likely to require significant observability of the different parameters of interest (e.g., demand, voltages, currents, etc.). Ensuring completeness of data is, therefore, paramount. In this context, an algorithm for recovering missing state variable observations in electricity distribution systems is presented. The proposed method exploits the low rank structure of the state variables via a matrix completion approach while incorporating prior knowledge in the form of second order statistics. Specifically, the recovery method combines nuclear norm minimization with Bayesian estimation. The performance of the new algorithm is compared to the information-theoretic limits and tested trough simulations using real data of an urban low voltage distribution system. The impact of the prior knowledge is analyzed when a mismatched covariance is used and for a Markovian sampling that introduces structure in the observation pattern. Numerical results demonstrate that the proposed algorithm is robust and outperforms existing state of the art algorithms

    Fabrication and characterization of shape memory polymers at small scales

    Get PDF
    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory poly- mers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) study spin coating conditions on thin film quality with designed experiments. (iv) apply neural networks and genetic algorithms to optimize these systems.Ph.D.Committee Chair: Gall, Ken; Committee Chair: May, Gary S; Committee Member: Brand, Oliver; Committee Member: Degertekin, F Levent; Committee Member: Milor, Linda

    A Dynamic Distributed Scheduler for Computing on the Edge

    Full text link
    Edge computing has become a promising computing paradigm for building IoT (Internet of Things) applications, particularly for applications with specific constraints such as latency or privacy requirements. Due to resource constraints at the edge, it is important to efficiently utilize all available computing resources to satisfy these constraints. A key challenge in utilizing these computing resources is the scheduling of different computing tasks in a dynamically varying, highly hybrid computing environment. This paper described the design, implementation, and evaluation of a distributed scheduler for the edge that constantly monitors the current state of the computing infrastructure and dynamically schedules various computing tasks to ensure that all application constraints are met. This scheduler has been extensively evaluated with real-world AI applications under different scenarios and demonstrates that it outperforms current scheduling approaches in satisfying various application constraints.Comment: 11 pages,14 figure

    On a Uniform Causality Model for Industrial Automation

    Full text link
    The increasing complexity of Cyber-Physical Systems (CPS) makes industrial automation challenging. Large amounts of data recorded by sensors need to be processed to adequately perform tasks such as diagnosis in case of fault. A promising approach to deal with this complexity is the concept of causality. However, most research on causality has focused on inferring causal relations between parts of an unknown system. Engineering uses causality in a fundamentally different way: complex systems are constructed by combining components with known, controllable behavior. As CPS are constructed by the second approach, most data-based causality models are not suited for industrial automation. To bridge this gap, a Uniform Causality Model for various application areas of industrial automation is proposed, which will allow better communication and better data usage across disciplines. The resulting model describes the behavior of CPS mathematically and, as the model is evaluated on the unique requirements of the application areas, it is shown that the Uniform Causality Model can work as a basis for the application of new approaches in industrial automation that focus on machine learning
    • …
    corecore